Triangulation in o-minimal fields with standard part map
Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 133-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In answering questions of J. Maříková [Fund. Math. 209 (2010)]
we prove a triangulation result that is of independent interest. In more detail, let $R$ be an
o-minimal field with a proper convex subring $V$, and let $\mathop{\rm st}: V \to \boldsymbol k$
be the corresponding standard part map. Under a mild assumption
on $(R,V)$ we show that a definable set
$X\subseteq V^n$ admits a triangulation that induces a triangulation of its standard
part $\mathop{\rm st} X\subseteq \boldsymbol k^n$.
Keywords:
answering questions kov fund math prove triangulation result independent interest detail o minimal field proper convex subring mathop boldsymbol corresponding standard part map under mild assumption definable set subseteq admits triangulation induces triangulation its standard part mathop subseteq boldsymbol
Affiliations des auteurs :
Lou van den Dries 1 ; Jana Maříková 2
@article{10_4064_fm209_2_3,
author = {Lou van den Dries and Jana Ma\v{r}{\'\i}kov\'a},
title = {Triangulation in o-minimal fields with standard part map},
journal = {Fundamenta Mathematicae},
pages = {133--155},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2010},
doi = {10.4064/fm209-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-3/}
}
TY - JOUR AU - Lou van den Dries AU - Jana Maříková TI - Triangulation in o-minimal fields with standard part map JO - Fundamenta Mathematicae PY - 2010 SP - 133 EP - 155 VL - 209 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-3/ DO - 10.4064/fm209-2-3 LA - en ID - 10_4064_fm209_2_3 ER -
Lou van den Dries; Jana Maříková. Triangulation in o-minimal fields with standard part map. Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 133-155. doi: 10.4064/fm209-2-3
Cité par Sources :