O-minimal fields with standard part map
Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 115-132
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be an o-minimal field and $V$ a proper convex subring with
residue field $\boldsymbol{k}$ and standard part (residue) map $\mathop{\rm st}
\colon V\to \boldsymbol{k}$. Let $\boldsymbol{k}_{\rm ind}$ be the
expansion of $\boldsymbol{k}$ by the standard parts of the definable
relations in $R$. We investigate the definable sets in
$\boldsymbol{k}_{\rm ind}$ and conditions on $(R,V)$ which imply
o-minimality of $\boldsymbol{k}_{\rm ind}$. We also show that if $R$ is
$\omega$-saturated and $V$ is the convex hull of $\mathbb Q$ in $R$, then
the sets definable in $\boldsymbol{k}_{\rm ind}$ are exactly the
standard parts of the sets definable in $(R,V)$.
Keywords:
o minimal field proper convex subring residue field boldsymbol standard part residue map mathop colon boldsymbol boldsymbol ind expansion boldsymbol standard parts definable relations investigate definable sets boldsymbol ind conditions which imply o minimality boldsymbol ind omega saturated convex hull mathbb sets definable boldsymbol ind exactly standard parts sets definable
Affiliations des auteurs :
Jana Maříková 1
@article{10_4064_fm209_2_2,
author = {Jana Ma\v{r}{\'\i}kov\'a},
title = {O-minimal fields with standard part map},
journal = {Fundamenta Mathematicae},
pages = {115--132},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2010},
doi = {10.4064/fm209-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-2/}
}
Jana Maříková. O-minimal fields with standard part map. Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 115-132. doi: 10.4064/fm209-2-2
Cité par Sources :