O-minimal fields with standard part map
Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 115-132.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be an o-minimal field and $V$ a proper convex subring with residue field $\boldsymbol{k}$ and standard part (residue) map $\mathop{\rm st} \colon V\to \boldsymbol{k}$. Let $\boldsymbol{k}_{\rm ind}$ be the expansion of $\boldsymbol{k}$ by the standard parts of the definable relations in $R$. We investigate the definable sets in $\boldsymbol{k}_{\rm ind}$ and conditions on $(R,V)$ which imply o-minimality of $\boldsymbol{k}_{\rm ind}$. We also show that if $R$ is $\omega$-saturated and $V$ is the convex hull of $\mathbb Q$ in $R$, then the sets definable in $\boldsymbol{k}_{\rm ind}$ are exactly the standard parts of the sets definable in $(R,V)$.
DOI : 10.4064/fm209-2-2
Keywords: o minimal field proper convex subring residue field boldsymbol standard part residue map mathop colon boldsymbol boldsymbol ind expansion boldsymbol standard parts definable relations investigate definable sets boldsymbol ind conditions which imply o minimality boldsymbol ind omega saturated convex hull mathbb sets definable boldsymbol ind exactly standard parts sets definable

Jana Maříková 1

1 Department of Mathematics, WIU 476 Morgan Hall, 1 University Circle Macomb, IL 61455, U.S.A.
@article{10_4064_fm209_2_2,
     author = {Jana Ma\v{r}{\'\i}kov\'a},
     title = {O-minimal fields with standard part map},
     journal = {Fundamenta Mathematicae},
     pages = {115--132},
     publisher = {mathdoc},
     volume = {209},
     number = {2},
     year = {2010},
     doi = {10.4064/fm209-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-2/}
}
TY  - JOUR
AU  - Jana Maříková
TI  - O-minimal fields with standard part map
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 115
EP  - 132
VL  - 209
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-2/
DO  - 10.4064/fm209-2-2
LA  - en
ID  - 10_4064_fm209_2_2
ER  - 
%0 Journal Article
%A Jana Maříková
%T O-minimal fields with standard part map
%J Fundamenta Mathematicae
%D 2010
%P 115-132
%V 209
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-2/
%R 10.4064/fm209-2-2
%G en
%F 10_4064_fm209_2_2
Jana Maříková. O-minimal fields with standard part map. Fundamenta Mathematicae, Tome 209 (2010) no. 2, pp. 115-132. doi : 10.4064/fm209-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm209-2-2/

Cité par Sources :