Adding machines, endpoints, and inverse limit spaces
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a unimodal map in the logistic or symmetric tent family whose restriction to the omega limit set of the turning point is topologically conjugate to an adding machine. A combinatoric characterization is provided for endpoints of the inverse limit space $(I,f)$, where $I$ denotes the core of the map.
DOI : 10.4064/fm209-1-6
Keywords: unimodal map logistic symmetric tent family whose restriction omega limit set turning point topologically conjugate adding machine combinatoric characterization provided endpoints inverse limit space where denotes core map

Lori Alvin 1 ; Karen Brucks 1

1 Department of Mathematical Sciences University of Wisconsin at Milwaukee Milwaukee, WI 53201-0413, U.S.A.
@article{10_4064_fm209_1_6,
     author = {Lori Alvin and Karen Brucks},
     title = {Adding machines, endpoints, and inverse limit spaces},
     journal = {Fundamenta Mathematicae},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-6/}
}
TY  - JOUR
AU  - Lori Alvin
AU  - Karen Brucks
TI  - Adding machines, endpoints, and inverse limit spaces
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 81
EP  - 93
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-6/
DO  - 10.4064/fm209-1-6
LA  - en
ID  - 10_4064_fm209_1_6
ER  - 
%0 Journal Article
%A Lori Alvin
%A Karen Brucks
%T Adding machines, endpoints, and inverse limit spaces
%J Fundamenta Mathematicae
%D 2010
%P 81-93
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-6/
%R 10.4064/fm209-1-6
%G en
%F 10_4064_fm209_1_6
Lori Alvin; Karen Brucks. Adding machines, endpoints, and inverse limit spaces. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 81-93. doi : 10.4064/fm209-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-6/

Cité par Sources :