Stationary and convergent strategies in Choquet games
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 59-79.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If Nonempty has a winning strategy against Empty in the Choquet game on a space, the space is said to be a Choquet space. Such a winning strategy allows Nonempty to consider the entire finite history of previous moves before making each new move; a stationary strategy only permits Nonempty to consider the previous move by Empty. We show that Nonempty has a stationary winning strategy for every second-countable $T_1$ Choquet space. More generally, Nonempty has a stationary winning strategy for any $T_1$ Choquet space with an open-finite basis. We also study convergent strategies for the Choquet game, proving the following results. A $T_1$ space $X$ is the open continuous image of a complete metric space if and only if Nonempty has a convergent winning strategy in the Choquet game on $X$. A $T_1$ space $X$ is the open continuous compact image of a metric space if and only if $X$ is metacompact and Nonempty has a stationary convergent strategy in the Choquet game on $X$. A $T_1$ space $X$ is the open continuous compact image of a complete metric space if and only if $X$ is metacompact and Nonempty has a stationary convergent winning strategy in the Choquet game on $X$.
DOI : 10.4064/fm209-1-5
Keywords: nonempty has winning strategy against empty choquet game space space said choquet space winning strategy allows nonempty consider entire finite history previous moves before making each move stationary strategy only permits nonempty consider previous move empty nonempty has stationary winning strategy every second countable choquet space generally nonempty has stationary winning strategy choquet space open finite basis study convergent strategies choquet game proving following results space continuous image complete metric space only nonempty has convergent winning strategy choquet game nbsp space continuous compact image metric space only metacompact nonempty has stationary convergent strategy choquet game nbsp space continuous compact image complete metric space only metacompact nonempty has stationary convergent winning strategy choquet game nbsp

François G. Dorais 1 ; Carl Mummert 2

1 Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109, U.S.A.
2 Department of Mathematics Marshall University 1 John Marshall Drive Huntington, WV 25755, U.S.A.
@article{10_4064_fm209_1_5,
     author = {Fran\c{c}ois G. Dorais and Carl Mummert},
     title = {Stationary and convergent strategies in {Choquet} games},
     journal = {Fundamenta Mathematicae},
     pages = {59--79},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-5/}
}
TY  - JOUR
AU  - François G. Dorais
AU  - Carl Mummert
TI  - Stationary and convergent strategies in Choquet games
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 59
EP  - 79
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-5/
DO  - 10.4064/fm209-1-5
LA  - en
ID  - 10_4064_fm209_1_5
ER  - 
%0 Journal Article
%A François G. Dorais
%A Carl Mummert
%T Stationary and convergent strategies in Choquet games
%J Fundamenta Mathematicae
%D 2010
%P 59-79
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-5/
%R 10.4064/fm209-1-5
%G en
%F 10_4064_fm209_1_5
François G. Dorais; Carl Mummert. Stationary and convergent strategies in Choquet games. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 59-79. doi : 10.4064/fm209-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-5/

Cité par Sources :