Homotopy types of one-dimensional Peano continua
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 27-42
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be one-dimensional Peano continua. If the fundamental groups of $X$ and $Y$ are isomorphic, then $X$ and $Y$ are homotopy equivalent. Every homomorphism from the fundamental group of $X$ to that of $Y$ is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
Keywords:
one dimensional peano continua fundamental groups isomorphic homotopy equivalent every homomorphism fundamental group composition homomorphism induced continuous map base point change isomorphism
Affiliations des auteurs :
Katsuya Eda 1
@article{10_4064_fm209_1_3,
author = {Katsuya Eda},
title = {Homotopy types of one-dimensional {Peano} continua},
journal = {Fundamenta Mathematicae},
pages = {27--42},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2010},
doi = {10.4064/fm209-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-3/}
}
Katsuya Eda. Homotopy types of one-dimensional Peano continua. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 27-42. doi: 10.4064/fm209-1-3
Cité par Sources :