Homotopy types of one-dimensional Peano continua
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 27-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ and $Y$ be one-dimensional Peano continua. If the fundamental groups of $X$ and $Y$ are isomorphic, then $X$ and $Y$ are homotopy equivalent. Every homomorphism from the fundamental group of $X$ to that of $Y$ is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
DOI : 10.4064/fm209-1-3
Keywords: one dimensional peano continua fundamental groups isomorphic homotopy equivalent every homomorphism fundamental group composition homomorphism induced continuous map base point change isomorphism

Katsuya Eda 1

1 School of Science and Engineering Waseda University Tokyo 169-8555, Japan
@article{10_4064_fm209_1_3,
     author = {Katsuya Eda},
     title = {Homotopy types of one-dimensional {Peano} continua},
     journal = {Fundamenta Mathematicae},
     pages = {27--42},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-3/}
}
TY  - JOUR
AU  - Katsuya Eda
TI  - Homotopy types of one-dimensional Peano continua
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 27
EP  - 42
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-3/
DO  - 10.4064/fm209-1-3
LA  - en
ID  - 10_4064_fm209_1_3
ER  - 
%0 Journal Article
%A Katsuya Eda
%T Homotopy types of one-dimensional Peano continua
%J Fundamenta Mathematicae
%D 2010
%P 27-42
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-3/
%R 10.4064/fm209-1-3
%G en
%F 10_4064_fm209_1_3
Katsuya Eda. Homotopy types of one-dimensional Peano continua. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 27-42. doi : 10.4064/fm209-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-3/

Cité par Sources :