Differentiation of $n$-convex functions
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 9-25.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main result of this paper is that if $f$ is $n$-convex on a measurable subset $E$ of $\mathbb R$, then $f$ is $n-2$ times differentiable, $n-2$ times Peano differentiable and the corresponding derivatives are equal, and $f^{(n-1)}=f_{(n-1)}$ except on a countable set. Moreover $f_{(n-1)}$ is approximately differentiable with approximate derivative equal to the $n$th approximate Peano derivative of $f$ almost everywhere.
DOI : 10.4064/fm209-1-2
Keywords: main result paper n convex measurable subset mathbb n times differentiable n times peano differentiable corresponding derivatives equal n n except countable set moreover n approximately differentiable approximate derivative equal nth approximate peano derivative almost everywhere

H. Fejzić 1 ; R. E. Svetic 2 ; C. E. Weil 3

1 Department of Mathematics California State University San Bernardino, CA 92407, U.S.A.
2 2022 N. Nevada St. Chandler, AZ 85225, U.S.A.
3 Department of Mathematics Michigan State University East Lansing, MI 48824-1027, U.S.A.
@article{10_4064_fm209_1_2,
     author = {H. Fejzi\'c and R. E. Svetic and C. E. Weil},
     title = {Differentiation of $n$-convex functions},
     journal = {Fundamenta Mathematicae},
     pages = {9--25},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-2/}
}
TY  - JOUR
AU  - H. Fejzić
AU  - R. E. Svetic
AU  - C. E. Weil
TI  - Differentiation of $n$-convex functions
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 9
EP  - 25
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-2/
DO  - 10.4064/fm209-1-2
LA  - en
ID  - 10_4064_fm209_1_2
ER  - 
%0 Journal Article
%A H. Fejzić
%A R. E. Svetic
%A C. E. Weil
%T Differentiation of $n$-convex functions
%J Fundamenta Mathematicae
%D 2010
%P 9-25
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-2/
%R 10.4064/fm209-1-2
%G en
%F 10_4064_fm209_1_2
H. Fejzić; R. E. Svetic; C. E. Weil. Differentiation of $n$-convex functions. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 9-25. doi : 10.4064/fm209-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-2/

Cité par Sources :