Differentiation of $n$-convex functions
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 9-25
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The main result of this paper is that if $f$ is $n$-convex on a measurable subset $E$ of
$\mathbb R$, then $f$ is $n-2$ times differentiable, $n-2$ times Peano
differentiable and the corresponding derivatives are equal, and
$f^{(n-1)}=f_{(n-1)}$ except on a countable set. Moreover
$f_{(n-1)}$ is approximately differentiable with approximate
derivative equal to the $n$th approximate Peano derivative
of $f$ almost everywhere.
Keywords:
main result paper n convex measurable subset mathbb n times differentiable n times peano differentiable corresponding derivatives equal n n except countable set moreover n approximately differentiable approximate derivative equal nth approximate peano derivative almost everywhere
Affiliations des auteurs :
H. Fejzić 1 ; R. E. Svetic 2 ; C. E. Weil 3
@article{10_4064_fm209_1_2,
author = {H. Fejzi\'c and R. E. Svetic and C. E. Weil},
title = {Differentiation of $n$-convex functions},
journal = {Fundamenta Mathematicae},
pages = {9--25},
year = {2010},
volume = {209},
number = {1},
doi = {10.4064/fm209-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-2/}
}
H. Fejzić; R. E. Svetic; C. E. Weil. Differentiation of $n$-convex functions. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 9-25. doi: 10.4064/fm209-1-2
Cité par Sources :