A reconstruction theorem for locally moving groups acting on completely metrizable spaces
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a group which acts by homeomorphisms on a metric space $X$. We say the action of $G$ is locally moving on $X$ if for every open $U \subseteq X$ there is a $g \in G$ such that $g {\restriction} X \neq {\rm Id}$ while $g {\restriction} (X \setminus U) = {\rm Id}$. We prove the following theorem:Theorem A. Let $X,Y$ be completely metrizable spaces and let $G$ be a group which acts on $X$ and $Y$ with locally moving actions. If the orbits of the action of $G$ on $X$ are of the second category in $X$ and the orbits of the action of $G$ on $Y$ are of the second category in $Y$, then $X$ and $Y$ are homeomorphic. A particular case of Theorem A gives a positive answer to a question of M. Rubin and J. van Mill who asked whether $X$ and $Y$ are homeomorphic whenever $G$ is strongly locally homogeneous on $X$ and $Y$.
DOI : 10.4064/fm209-1-1
Keywords: group which acts homeomorphisms metric space say action locally moving every subseteq there restriction neq while restriction setminus prove following theorem theorem completely metrizable spaces group which acts locally moving actions orbits action second category orbits action second category homeomorphic particular theorem gives positive answer question rubin van mill who asked whether homeomorphic whenever strongly locally homogeneous

Edmund Ben-Ami 1

1 Department of Mathematics Ben Gurion University of the Negev Beer Sheva, Israel
@article{10_4064_fm209_1_1,
     author = {Edmund Ben-Ami},
     title = {A reconstruction theorem for locally moving groups
 acting on completely metrizable spaces},
     journal = {Fundamenta Mathematicae},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-1/}
}
TY  - JOUR
AU  - Edmund Ben-Ami
TI  - A reconstruction theorem for locally moving groups
 acting on completely metrizable spaces
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 1
EP  - 8
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-1/
DO  - 10.4064/fm209-1-1
LA  - en
ID  - 10_4064_fm209_1_1
ER  - 
%0 Journal Article
%A Edmund Ben-Ami
%T A reconstruction theorem for locally moving groups
 acting on completely metrizable spaces
%J Fundamenta Mathematicae
%D 2010
%P 1-8
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-1/
%R 10.4064/fm209-1-1
%G en
%F 10_4064_fm209_1_1
Edmund Ben-Ami. A reconstruction theorem for locally moving groups
 acting on completely metrizable spaces. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 1-8. doi : 10.4064/fm209-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-1/

Cité par Sources :