Covering the plane with sprays
Fundamenta Mathematicae, Tome 208 (2010) no. 3, pp. 263-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any three noncollinear points $c_0,c_1,c_2 \in \mathbb R^2$, there are sprays $S_0,S_1,S_2$ centered at $c_0,c_1,c_2$ that cover $\mathbb R^2$. This improves the result of de la Vega in which $c_0,c_1,c_2$ were required to be the vertices of an equilateral triangle.
DOI : 10.4064/fm208-3-3
Keywords: three noncollinear points mathbb there sprays centered cover mathbb improves result vega which required vertices equilateral triangle

James H. Schmerl 1

1 Department of Mathematics University of Connecticut Storrs, CT 06269-3009, U.S.A.
@article{10_4064_fm208_3_3,
     author = {James H. Schmerl},
     title = {Covering the plane with sprays},
     journal = {Fundamenta Mathematicae},
     pages = {263--272},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2010},
     doi = {10.4064/fm208-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-3-3/}
}
TY  - JOUR
AU  - James H. Schmerl
TI  - Covering the plane with sprays
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 263
EP  - 272
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm208-3-3/
DO  - 10.4064/fm208-3-3
LA  - en
ID  - 10_4064_fm208_3_3
ER  - 
%0 Journal Article
%A James H. Schmerl
%T Covering the plane with sprays
%J Fundamenta Mathematicae
%D 2010
%P 263-272
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm208-3-3/
%R 10.4064/fm208-3-3
%G en
%F 10_4064_fm208_3_3
James H. Schmerl. Covering the plane with sprays. Fundamenta Mathematicae, Tome 208 (2010) no. 3, pp. 263-272. doi : 10.4064/fm208-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm208-3-3/

Cité par Sources :