Covering the plane with sprays
Fundamenta Mathematicae, Tome 208 (2010) no. 3, pp. 263-272
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any three noncollinear points $c_0,c_1,c_2 \in \mathbb R^2$, there are
sprays $S_0,S_1,S_2$ centered at $c_0,c_1,c_2$ that cover $\mathbb R^2$. This
improves the result of de la Vega in which $c_0,c_1,c_2$ were required to be the vertices of an equilateral triangle.
Keywords:
three noncollinear points mathbb there sprays centered cover mathbb improves result vega which required vertices equilateral triangle
Affiliations des auteurs :
James H. Schmerl 1
@article{10_4064_fm208_3_3,
author = {James H. Schmerl},
title = {Covering the plane with sprays},
journal = {Fundamenta Mathematicae},
pages = {263--272},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2010},
doi = {10.4064/fm208-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-3-3/}
}
James H. Schmerl. Covering the plane with sprays. Fundamenta Mathematicae, Tome 208 (2010) no. 3, pp. 263-272. doi: 10.4064/fm208-3-3
Cité par Sources :