On the difference property of Borel measurable functions
Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 57-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-$\alpha $ differences.
Keywords:
atomlessly measurable cardinal exists class lebesgue measurable functions class borel functions baire classes orders have difference property gives consistent positive answer laczkovichs problem acta math acad sci hungar complete positive answer laczkovichs problem concerning borel functions baire alpha differences
Affiliations des auteurs :
Hiroshi Fujita 1 ; Tamás Mátrai 2
@article{10_4064_fm208_1_4,
author = {Hiroshi Fujita and Tam\'as M\'atrai},
title = {On the difference property of {Borel} measurable functions},
journal = {Fundamenta Mathematicae},
pages = {57--73},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2010},
doi = {10.4064/fm208-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-4/}
}
TY - JOUR AU - Hiroshi Fujita AU - Tamás Mátrai TI - On the difference property of Borel measurable functions JO - Fundamenta Mathematicae PY - 2010 SP - 57 EP - 73 VL - 208 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-4/ DO - 10.4064/fm208-1-4 LA - en ID - 10_4064_fm208_1_4 ER -
Hiroshi Fujita; Tamás Mátrai. On the difference property of Borel measurable functions. Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 57-73. doi: 10.4064/fm208-1-4
Cité par Sources :