Topology of the regular part for
infinitely renormalizable quadratic polynomials
Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 35-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the well studied process of
renormalization of quadratic polynomials from the point of view of
their natural extensions. In particular, we describe the topology of
the inverse limit of infinitely renormalizable quadratic polynomials
and prove that when they satisfy a priori bounds, the
topology is rigid modulo combinatorial equivalence.
Keywords:
describe studied process renormalization quadratic polynomials point view their natural extensions particular describe topology inverse limit infinitely renormalizable quadratic polynomials prove satisfy priori bounds topology rigid modulo combinatorial equivalence
Affiliations des auteurs :
Carlos Cabrera 1 ; Tomoki Kawahira 2
@article{10_4064_fm208_1_3,
author = {Carlos Cabrera and Tomoki Kawahira},
title = {Topology of the regular part for
infinitely renormalizable quadratic polynomials},
journal = {Fundamenta Mathematicae},
pages = {35--56},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2010},
doi = {10.4064/fm208-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-3/}
}
TY - JOUR AU - Carlos Cabrera AU - Tomoki Kawahira TI - Topology of the regular part for infinitely renormalizable quadratic polynomials JO - Fundamenta Mathematicae PY - 2010 SP - 35 EP - 56 VL - 208 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-3/ DO - 10.4064/fm208-1-3 LA - en ID - 10_4064_fm208_1_3 ER -
%0 Journal Article %A Carlos Cabrera %A Tomoki Kawahira %T Topology of the regular part for infinitely renormalizable quadratic polynomials %J Fundamenta Mathematicae %D 2010 %P 35-56 %V 208 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-3/ %R 10.4064/fm208-1-3 %G en %F 10_4064_fm208_1_3
Carlos Cabrera; Tomoki Kawahira. Topology of the regular part for infinitely renormalizable quadratic polynomials. Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 35-56. doi: 10.4064/fm208-1-3
Cité par Sources :