$C^1$ stable maps: examples without saddles
Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 23-33
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give here the first examples of $C^1$ structurally stable maps on manifolds of dimension greater than two that are neither diffeomorphisms nor expanding. It is shown that an Axiom A endomorphism all of whose basic pieces are expanding or attracting is $C^1$ stable. A necessary condition for the existence of such examples is also given.
Keywords:
here first examples structurally stable maps manifolds dimension greater neither diffeomorphisms nor expanding shown axiom endomorphism whose basic pieces expanding attracting stable necessary condition existence examples given
Affiliations des auteurs :
J. Iglesias 1 ; A. Portela 1 ; A. Rovella 2
@article{10_4064_fm208_1_2,
author = {J. Iglesias and A. Portela and A. Rovella},
title = {$C^1$ stable maps: examples without saddles},
journal = {Fundamenta Mathematicae},
pages = {23--33},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2010},
doi = {10.4064/fm208-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-2/}
}
TY - JOUR AU - J. Iglesias AU - A. Portela AU - A. Rovella TI - $C^1$ stable maps: examples without saddles JO - Fundamenta Mathematicae PY - 2010 SP - 23 EP - 33 VL - 208 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-2/ DO - 10.4064/fm208-1-2 LA - en ID - 10_4064_fm208_1_2 ER -
J. Iglesias; A. Portela; A. Rovella. $C^1$ stable maps: examples without saddles. Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 23-33. doi: 10.4064/fm208-1-2
Cité par Sources :