On the Hausdorff dimension of piecewise hyperbolic attractors
Fundamenta Mathematicae, Tome 207 (2010) no. 3, pp. 255-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study non-invertible piecewise hyperbolic maps in the plane. The Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents, provided that the map satisfies a transversality condition. Explicit examples of maps for which this condition holds are given.
DOI : 10.4064/fm207-3-3
Keywords: study non invertible piecewise hyperbolic maps plane hausdorff dimension attractor calculated terms lyapunov exponents provided map satisfies transversality condition explicit examples maps which condition holds given

Tomas Persson 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
@article{10_4064_fm207_3_3,
     author = {Tomas Persson},
     title = {On the {Hausdorff} dimension of
 piecewise hyperbolic attractors},
     journal = {Fundamenta Mathematicae},
     pages = {255--272},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2010},
     doi = {10.4064/fm207-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-3/}
}
TY  - JOUR
AU  - Tomas Persson
TI  - On the Hausdorff dimension of
 piecewise hyperbolic attractors
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 255
EP  - 272
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-3/
DO  - 10.4064/fm207-3-3
LA  - en
ID  - 10_4064_fm207_3_3
ER  - 
%0 Journal Article
%A Tomas Persson
%T On the Hausdorff dimension of
 piecewise hyperbolic attractors
%J Fundamenta Mathematicae
%D 2010
%P 255-272
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-3/
%R 10.4064/fm207-3-3
%G en
%F 10_4064_fm207_3_3
Tomas Persson. On the Hausdorff dimension of
 piecewise hyperbolic attractors. Fundamenta Mathematicae, Tome 207 (2010) no. 3, pp. 255-272. doi : 10.4064/fm207-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-3/

Cité par Sources :