A characterization of $\omega$-limit sets for piecewise monotone maps of the interval
Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 161-174.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a piecewise monotone map $f$ on a compact interval $I$, we characterize the $\omega$-limit sets that are bounded away from the post-critical points of $f$. If the pre-critical points of $f$ are dense, for example when $f$ is locally eventually onto, and ${\mit\Lambda}\subset I$ is closed, invariant and contains no post-critical point, then ${\mit\Lambda}$ is the $\omega$-limit set of a point in $I$ if and only if ${\mit\Lambda}$ is internally chain transitive in the sense of Hirsch, Smith and Zhao; the proof relies upon symbolic dynamics. By identifying points of $\omega$-limit sets via their limit-itineraries, we offer simple examples which show that internal chain transitivity does not characterize $\omega$-limit sets for interval maps in general.
DOI : 10.4064/fm207-2-4
Keywords: piecewise monotone map compact interval characterize omega limit sets bounded away post critical points pre critical points dense example locally eventually mit lambda subset closed invariant contains post critical point mit lambda omega limit set point only mit lambda internally chain transitive sense hirsch smith zhao proof relies symbolic dynamics identifying points omega limit sets via their limit itineraries offer simple examples which internal chain transitivity does characterize omega limit sets interval maps general

Andrew D. Barwell 1

1 School of Mathematics and Statistics University of Birmingham Birmingham, B15 2TT, UK
@article{10_4064_fm207_2_4,
     author = {Andrew D. Barwell},
     title = {A characterization of $\omega$-limit sets for piecewise
 monotone maps of the interval},
     journal = {Fundamenta Mathematicae},
     pages = {161--174},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2010},
     doi = {10.4064/fm207-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-4/}
}
TY  - JOUR
AU  - Andrew D. Barwell
TI  - A characterization of $\omega$-limit sets for piecewise
 monotone maps of the interval
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 161
EP  - 174
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-4/
DO  - 10.4064/fm207-2-4
LA  - en
ID  - 10_4064_fm207_2_4
ER  - 
%0 Journal Article
%A Andrew D. Barwell
%T A characterization of $\omega$-limit sets for piecewise
 monotone maps of the interval
%J Fundamenta Mathematicae
%D 2010
%P 161-174
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-4/
%R 10.4064/fm207-2-4
%G en
%F 10_4064_fm207_2_4
Andrew D. Barwell. A characterization of $\omega$-limit sets for piecewise
 monotone maps of the interval. Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 161-174. doi : 10.4064/fm207-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-4/

Cité par Sources :