Trees of manifolds and boundaries of systolic groups
Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 71-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a $7$-systolic group acting geometrically on
a $7$-systolic normal pseudomanifold of dimension $3$.
Keywords:
prove pontryagin sphere pontryagin nonorientable surface occur gromov boundary systolic group acting geometrically nbsp systolic normal pseudomanifold dimension
Affiliations des auteurs :
Paweł Zawiślak 1
@article{10_4064_fm207_1_4,
author = {Pawe{\l} Zawi\'slak},
title = {Trees of manifolds and boundaries of systolic groups},
journal = {Fundamenta Mathematicae},
pages = {71--99},
publisher = {mathdoc},
volume = {207},
number = {1},
year = {2010},
doi = {10.4064/fm207-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-4/}
}
Paweł Zawiślak. Trees of manifolds and boundaries of systolic groups. Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 71-99. doi: 10.4064/fm207-1-4
Cité par Sources :