Trees of manifolds and boundaries of systolic groups
Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 71-99
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a $7$-systolic group acting geometrically on
a $7$-systolic normal pseudomanifold of dimension $3$.
Keywords:
prove pontryagin sphere pontryagin nonorientable surface occur gromov boundary systolic group acting geometrically nbsp systolic normal pseudomanifold dimension
Affiliations des auteurs :
Paweł Zawiślak  1
@article{10_4064_fm207_1_4,
author = {Pawe{\l} Zawi\'slak},
title = {Trees of manifolds and boundaries of systolic groups},
journal = {Fundamenta Mathematicae},
pages = {71--99},
year = {2010},
volume = {207},
number = {1},
doi = {10.4064/fm207-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-4/}
}
Paweł Zawiślak. Trees of manifolds and boundaries of systolic groups. Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 71-99. doi: 10.4064/fm207-1-4
Cité par Sources :