The strength of the projective Martin conjecture
Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 21-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that Martin's conjecture on $\Pi^1_1$ functions uniformly
$\leq_T$-order preserving on a cone implies $\Pi^1_1$ Turing
Determinacy over $\hbox{ZF}+{\hbox{DC}}$. In addition, it is also
proved that for $n\ge 0$, this conjecture for uniformly degree
invariant $\mathbf{\Pi}^1_{2n+1}$ functions is equivalent over ZFC
to $\mathbf{\Sigma}^1_{2n+2}$-Axiom of Determinacy. As a corollary,
the consistency of the conjecture
for uniformly degree invariant $\Pi^1_1$ functions implies the
consistency of the existence of a Woodin cardinal.
Keywords:
martins conjecture functions uniformly leq t order preserving cone implies turing determinacy hbox hbox addition proved conjecture uniformly degree invariant mathbf functions equivalent zfc mathbf sigma axiom determinacy corollary consistency conjecture uniformly degree invariant functions implies consistency existence woodin cardinal
Affiliations des auteurs :
C. T. Chong 1 ; Wei Wang 2 ; Liang Yu 3
@article{10_4064_fm207_1_2,
author = {C. T. Chong and Wei Wang and Liang Yu},
title = {The strength of the projective {Martin} conjecture},
journal = {Fundamenta Mathematicae},
pages = {21--27},
publisher = {mathdoc},
volume = {207},
number = {1},
year = {2010},
doi = {10.4064/fm207-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-2/}
}
TY - JOUR AU - C. T. Chong AU - Wei Wang AU - Liang Yu TI - The strength of the projective Martin conjecture JO - Fundamenta Mathematicae PY - 2010 SP - 21 EP - 27 VL - 207 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-2/ DO - 10.4064/fm207-1-2 LA - en ID - 10_4064_fm207_1_2 ER -
C. T. Chong; Wei Wang; Liang Yu. The strength of the projective Martin conjecture. Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 21-27. doi: 10.4064/fm207-1-2
Cité par Sources :