Homeomorphism groups of Sierpiński carpets and Erdős space
Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Erdős space $\mathfrak E$ is the “rational” Hilbert space, that is, the set of vectors in $\ell^2$ with all coordinates rational. Erdős proved that $\mathfrak E$ is one-dimensional and homeomorphic to its own square $\mathfrak E \times \mathfrak E$, which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of $\mathfrak E$. Let $M^{n+1}_n$, $n \in \mathbb N$, be the $n$-dimensional Menger continuum in $\mathbb{R}^{n+1}$, also known as the $n$-dimensional Sierpiński carpet, and let $D$ be a countable dense subset of $M^{n+1}_n$. We consider the topological group $\mathcal{H}(M^{n+1}_n, D)$ of all autohomeomorphisms of $M^{n+1}_n$ that map $D$ onto itself, equipped with the compact-open topology. We show that under some conditions on $D$ the space $\mathcal{H}(M^{n+1}_n, D)$ is homeomorphic to $\mathfrak E$ for $n \in \mathbb{N} \setminus \{3\}$.
DOI : 10.4064/fm207-1-1
Keywords: erd space mathfrak rational hilbert space set vectors ell coordinates rational erd proved mathfrak one dimensional homeomorphic its own square mathfrak times mathfrak which makes important example dimension theory dijkstra van mill found topological characterizations mathfrak mathbb n dimensional menger continuum mathbb known n dimensional sierpi ski carpet countable dense subset consider topological group mathcal autohomeomorphisms map itself equipped compact open topology under conditions space mathcal homeomorphic mathfrak mathbb setminus

Jan J. Dijkstra 1 ; Dave Visser 1

1 Faculteit der Exacte Wetenschappen//Afdeling Wiskunde Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
@article{10_4064_fm207_1_1,
     author = {Jan J. Dijkstra and Dave Visser},
     title = {Homeomorphism groups of {Sierpi\'nski} carpets and {Erd\H{o}s
space}},
     journal = {Fundamenta Mathematicae},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2010},
     doi = {10.4064/fm207-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-1/}
}
TY  - JOUR
AU  - Jan J. Dijkstra
AU  - Dave Visser
TI  - Homeomorphism groups of Sierpiński carpets and Erdős
space
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 1
EP  - 19
VL  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-1/
DO  - 10.4064/fm207-1-1
LA  - en
ID  - 10_4064_fm207_1_1
ER  - 
%0 Journal Article
%A Jan J. Dijkstra
%A Dave Visser
%T Homeomorphism groups of Sierpiński carpets and Erdős
space
%J Fundamenta Mathematicae
%D 2010
%P 1-19
%V 207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-1/
%R 10.4064/fm207-1-1
%G en
%F 10_4064_fm207_1_1
Jan J. Dijkstra; Dave Visser. Homeomorphism groups of Sierpiński carpets and Erdős
space. Fundamenta Mathematicae, Tome 207 (2010) no. 1, pp. 1-19. doi : 10.4064/fm207-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm207-1-1/

Cité par Sources :