The solenoids are the only circle-like
continua that admit expansive homeomorphisms
Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 237-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A homeomorphism $h:X\rightarrow X$ of a compactum
$X$ is expansive provided
that for some fixed $c>0$ and any distinct $x, y\in X$ there exists an
integer $n$, dependent only on $x$ and $y$, such that
${d}(h^n(x),h^n(y))>c$. It is shown that if $X$ is a
circle-like continuum that admits an expansive homeomorphism, then $X$ is homeomorphic to a solenoid.
Keywords:
homeomorphism rightarrow compactum expansive provided fixed distinct there exists integer dependent only shown circle like continuum admits expansive homeomorphism homeomorphic solenoid
Affiliations des auteurs :
Christopher Mouron  1
@article{10_4064_fm205_3_3,
author = {Christopher Mouron},
title = {The solenoids are the only circle-like
continua that admit expansive homeomorphisms},
journal = {Fundamenta Mathematicae},
pages = {237--264},
year = {2009},
volume = {205},
number = {3},
doi = {10.4064/fm205-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-3/}
}
TY - JOUR AU - Christopher Mouron TI - The solenoids are the only circle-like continua that admit expansive homeomorphisms JO - Fundamenta Mathematicae PY - 2009 SP - 237 EP - 264 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-3/ DO - 10.4064/fm205-3-3 LA - en ID - 10_4064_fm205_3_3 ER -
Christopher Mouron. The solenoids are the only circle-like continua that admit expansive homeomorphisms. Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 237-264. doi: 10.4064/fm205-3-3
Cité par Sources :