Symmetries of spatial graphs and Simon invariants
Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 219-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An ordered and oriented $2$-component link $L$ in the $3$-sphere is said to be achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering of the components. Kirk–Livingston showed that if $L$ is achiral then the linking number of $L$ is not congruent to $2$ modulo $4$. In this paper we study orientation-preserving or reversing symmetries of $2$-component links, spatial complete graphs on $5$ vertices and spatial complete bipartite graphs on $3+3$ vertices in detail, and determine necessary conditions on linking numbers and Simon invariants for such links and spatial graphs to be symmetric.
DOI : 10.4064/fm205-3-2
Keywords: ordered oriented component link sphere said achiral ambient isotopic its mirror image ignoring orientation ordering components kirk livingston showed achiral linking number congruent modulo paper study orientation preserving reversing symmetries component links spatial complete graphs vertices spatial complete bipartite graphs vertices detail determine necessary conditions linking numbers simon invariants links spatial graphs symmetric

Ryo Nikkuni 1 ; Kouki Taniyama 2

1 Department of Mathematics School of Arts and Sciences Tokyo Woman's Christian University 2-6-1 Zempukuji Suginami-ku, Tokyo 167-8585, Japan
2 Department of Mathematics School of Education Waseda University Nishi-Waseda 1-6-1 Shinjuku-ku, Tokyo 169-8050, Japan
@article{10_4064_fm205_3_2,
     author = {Ryo Nikkuni and Kouki Taniyama},
     title = {Symmetries of spatial graphs and {Simon} invariants},
     journal = {Fundamenta Mathematicae},
     pages = {219--236},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2009},
     doi = {10.4064/fm205-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-2/}
}
TY  - JOUR
AU  - Ryo Nikkuni
AU  - Kouki Taniyama
TI  - Symmetries of spatial graphs and Simon invariants
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 219
EP  - 236
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-2/
DO  - 10.4064/fm205-3-2
LA  - en
ID  - 10_4064_fm205_3_2
ER  - 
%0 Journal Article
%A Ryo Nikkuni
%A Kouki Taniyama
%T Symmetries of spatial graphs and Simon invariants
%J Fundamenta Mathematicae
%D 2009
%P 219-236
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-2/
%R 10.4064/fm205-3-2
%G en
%F 10_4064_fm205_3_2
Ryo Nikkuni; Kouki Taniyama. Symmetries of spatial graphs and Simon invariants. Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 219-236. doi : 10.4064/fm205-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-2/

Cité par Sources :