Generalized $\alpha$-variation and Lebesgue equivalence to differentiable functions
Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 191-217.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We find conditions on a real function $f:[a,b]\to\mathbb R$ equivalent to being Lebesgue equivalent to an $n$-times differentiable function ($n\geq 2$); a simple solution in the case $n=2$ appeared in an earlier paper. For that purpose, we introduce the notions of $CBVG_{1/n}$ and $SBVG_{1/n}$ functions, which play analogous rôles for the $n$th order differentiability to the classical notion of a $VBG_*$ function for the first order differentiability, and the classes $CBV_{1/n}$ and $SBV_{{1}/{n}}$ (introduced by Preiss and Laczkovich) for $C^n$ smoothness. As a consequence, we deduce that Lebesgue equivalence to an $n$-times differentiable function is the same as Lebesgue equivalence to a function $f$ which is $(n-1)$-times differentiable with $f^{(n-1)}(\cdot)$ pointwise Lipschitz. We also characterize functions that are Lebesgue equivalent to $n$-times differentiable functions with a.e. nonzero derivatives. As a corollary, we establish a generalization of Zahorski's Lemma for higher order differentiability.
DOI : 10.4064/fm205-3-1
Keywords: conditions real function mathbb equivalent being lebesgue equivalent n times differentiable function geq simple solution appeared earlier paper purpose introduce notions cbvg sbvg functions which play analogous les nth order differentiability classical notion vbg * function first order differentiability classes cbv sbv introduced preiss laczkovich smoothness consequence deduce lebesgue equivalence n times differentiable function lebesgue equivalence function which n times differentiable n cdot pointwise lipschitz characterize functions lebesgue equivalent n times differentiable functions nonzero derivatives corollary establish generalization zahorskis lemma higher order differentiability

Jakub Duda 1

1 Department of Mathematics Weizmann Institute of Science Rehovot 76100, Israel and PIRA Energy Group 3 Park Ave FL 26 New York, NY 10016, U.S.A.
@article{10_4064_fm205_3_1,
     author = {Jakub Duda},
     title = {Generalized $\alpha$-variation and {Lebesgue} equivalence to
differentiable functions},
     journal = {Fundamenta Mathematicae},
     pages = {191--217},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2009},
     doi = {10.4064/fm205-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-1/}
}
TY  - JOUR
AU  - Jakub Duda
TI  - Generalized $\alpha$-variation and Lebesgue equivalence to
differentiable functions
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 191
EP  - 217
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-1/
DO  - 10.4064/fm205-3-1
LA  - en
ID  - 10_4064_fm205_3_1
ER  - 
%0 Journal Article
%A Jakub Duda
%T Generalized $\alpha$-variation and Lebesgue equivalence to
differentiable functions
%J Fundamenta Mathematicae
%D 2009
%P 191-217
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-1/
%R 10.4064/fm205-3-1
%G en
%F 10_4064_fm205_3_1
Jakub Duda. Generalized $\alpha$-variation and Lebesgue equivalence to
differentiable functions. Fundamenta Mathematicae, Tome 205 (2009) no. 3, pp. 191-217. doi : 10.4064/fm205-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm205-3-1/

Cité par Sources :