Proper actions of locally compact groups on equivariant absolute extensors
Fundamenta Mathematicae, Tome 205 (2009) no. 2, pp. 117-145
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a locally compact Hausdorff group. We study
equivariant absolute (neighborhood) extensors ($G$-${\rm AE}$'s and $G$-{\rm ANE's}) in the category
$G$-$\mathcal M$ of all proper $G$-spaces that are metrizable by a $G$-invariant metric.
We first solve the linearization problem for proper group actions by proving
that each $X\in G$-$\mathcal M$
admits an equivariant embedding in a Banach $G$-space $L$
such that $L\setminus\{0\}$ is a proper $G$-space and $L\setminus\{0\}\in G$-AE. This implies that in
$G$-$\mathcal M$ the notions of $G$-A(N)E and $G$-A(N)R coincide. Our embedding result is applied to prove
that if a $G$-space $X$ is a $G$-${\rm ANE}$ (resp., a $G$-${\rm
AE})$ such that all the orbits in $X$ are metrizable, then the
orbit space $X/G$ is an ANE (resp., an ${\rm AE}$ if, in
addition, $G$ is almost connected). Furthermore, we prove that if
$X\in G$-$\mathcal M$ then for any closed embedding
$X/G\hookrightarrow B$ in a metrizable space $B$,
there exists a closed $G$-embedding $X\hookrightarrow Z$ (a lifting) in a $G$-space $Z\in G$-$\mathcal
M$ such that $Z/G$ is a neighborhood of $X/G$ (resp., $Z/G=B$
whenever $G$ is almost connected). If a proper $G$-space $X$ has
metrizable orbits and a metrizable orbit space then it is
metrizable (by a $G$-invariant metric).
Keywords:
locally compact hausdorff group study equivariant absolute neighborhood extensors g g anes category g mathcal proper g spaces metrizable g invariant metric first solve linearization problem proper group actions proving each g mathcal admits equivariant embedding banach g space setminus proper g space setminus g ae implies g mathcal notions g a g a coincide embedding result applied prove g space g ane resp g orbits metrizable orbit space ane resp addition almost connected furthermore prove g mathcal closed embedding hookrightarrow metrizable space there exists closed g embedding hookrightarrow lifting g space g mathcal neighborhood resp whenever almost connected proper g space has metrizable orbits metrizable orbit space metrizable g invariant metric
Affiliations des auteurs :
Sergey Antonyan 1
@article{10_4064_fm205_2_3,
author = {Sergey Antonyan},
title = {Proper actions of locally compact groups on equivariant absolute extensors},
journal = {Fundamenta Mathematicae},
pages = {117--145},
publisher = {mathdoc},
volume = {205},
number = {2},
year = {2009},
doi = {10.4064/fm205-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-2-3/}
}
TY - JOUR AU - Sergey Antonyan TI - Proper actions of locally compact groups on equivariant absolute extensors JO - Fundamenta Mathematicae PY - 2009 SP - 117 EP - 145 VL - 205 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm205-2-3/ DO - 10.4064/fm205-2-3 LA - en ID - 10_4064_fm205_2_3 ER -
Sergey Antonyan. Proper actions of locally compact groups on equivariant absolute extensors. Fundamenta Mathematicae, Tome 205 (2009) no. 2, pp. 117-145. doi: 10.4064/fm205-2-3
Cité par Sources :