Open maps having the Bula property
Fundamenta Mathematicae, Tome 205 (2009) no. 2, pp. 91-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An open continuous map $f$ from a space $X$ onto a paracompact $C$-space $Y$ admits two disjoint closed sets $F_0,F_1\subset X$ with $f(F_0)=Y=f(F_1)$, provided all fibers of $f$ are infinite and $C^*$-embedded in $X$. Applications are given to the existence of “disjoint” usco multiselections of set-valued l.s.c. mappings defined on paracompact $C$-spaces, and to special type of factorizations of open continuous maps from metrizable spaces onto paracompact $C$-spaces. This settles several open questions.
Keywords:
continuous map space paracompact c space admits disjoint closed sets subset provided fibers infinite * embedded applications given existence disjoint usco multiselections set valued mappings defined paracompact c spaces special type factorizations continuous maps metrizable spaces paracompact c spaces settles several questions
Affiliations des auteurs :
Valentin Gutev 1 ; Vesko Valov 2
@article{10_4064_fm205_2_1,
author = {Valentin Gutev and Vesko Valov},
title = {Open maps having the {Bula} property},
journal = {Fundamenta Mathematicae},
pages = {91--104},
publisher = {mathdoc},
volume = {205},
number = {2},
year = {2009},
doi = {10.4064/fm205-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-2-1/}
}
Valentin Gutev; Vesko Valov. Open maps having the Bula property. Fundamenta Mathematicae, Tome 205 (2009) no. 2, pp. 91-104. doi: 10.4064/fm205-2-1
Cité par Sources :