Definable Davies' theorem
Fundamenta Mathematicae, Tome 205 (2009) no. 1, pp. 77-89.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following descriptive set-theoretic analogue of a theorem of R.~O.~Davies: Every $\Sigma^1_2$ function $f:\mathbb R\times\mathbb R\to\mathbb R$ can be represented as a sum of rectangular $\Sigma^1_2$ functions if and only if all reals are constructible.
DOI : 10.4064/fm205-1-4
Keywords: prove following descriptive set theoretic analogue theorem davies every sigma function mathbb times mathbb mathbb represented sum rectangular sigma functions only reals constructible

Asger Törnquist 1 ; William Weiss 2

1 Kurt Gödel Research Center University of Vienna Währinger Strasse 25 1090 Wien, Austria
2 Department of Mathematics University of Toronto 40 St. George Street, Room 6092 Toronto, Ontario, Canada
@article{10_4064_fm205_1_4,
     author = {Asger T\"ornquist and William Weiss},
     title = {Definable {Davies'} theorem},
     journal = {Fundamenta Mathematicae},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2009},
     doi = {10.4064/fm205-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-1-4/}
}
TY  - JOUR
AU  - Asger Törnquist
AU  - William Weiss
TI  - Definable Davies' theorem
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 77
EP  - 89
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm205-1-4/
DO  - 10.4064/fm205-1-4
LA  - en
ID  - 10_4064_fm205_1_4
ER  - 
%0 Journal Article
%A Asger Törnquist
%A William Weiss
%T Definable Davies' theorem
%J Fundamenta Mathematicae
%D 2009
%P 77-89
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm205-1-4/
%R 10.4064/fm205-1-4
%G en
%F 10_4064_fm205_1_4
Asger Törnquist; William Weiss. Definable Davies' theorem. Fundamenta Mathematicae, Tome 205 (2009) no. 1, pp. 77-89. doi : 10.4064/fm205-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm205-1-4/

Cité par Sources :