Definable Davies' theorem
Fundamenta Mathematicae, Tome 205 (2009) no. 1, pp. 77-89
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following descriptive set-theoretic analogue of a
theorem of R.~O.~Davies: Every $\Sigma^1_2$ function
$f:\mathbb R\times\mathbb R\to\mathbb R$ can be represented as a sum of rectangular
$\Sigma^1_2$ functions if and only if all reals are constructible.
Keywords:
prove following descriptive set theoretic analogue theorem davies every sigma function mathbb times mathbb mathbb represented sum rectangular sigma functions only reals constructible
Affiliations des auteurs :
Asger Törnquist 1 ; William Weiss 2
@article{10_4064_fm205_1_4,
author = {Asger T\"ornquist and William Weiss},
title = {Definable {Davies'} theorem},
journal = {Fundamenta Mathematicae},
pages = {77--89},
publisher = {mathdoc},
volume = {205},
number = {1},
year = {2009},
doi = {10.4064/fm205-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm205-1-4/}
}
Asger Törnquist; William Weiss. Definable Davies' theorem. Fundamenta Mathematicae, Tome 205 (2009) no. 1, pp. 77-89. doi: 10.4064/fm205-1-4
Cité par Sources :