Filter descriptive classes
of Borel functions
Fundamenta Mathematicae, Tome 204 (2009) no. 3, pp. 189-213
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
\We first prove that given any analytic filter ${\cal F}$ on $\omega$
the set of all functions $f$ on ${\bf 2}^\omega$ which can be represented as the pointwise limit
relative to ${\cal F}$ of some sequence $ (f_{n})_{n\in\omega}$ of continuous functions ($f=\lim_{\cal F} f_n$),
is exactly the set of all Borel functions of class $\xi$ for some
countable ordinal $\xi$ that we call the rank of ${\cal F}$.
We discuss several structural properties of this rank. For example,
we prove that any free $\Pi^0_ 4$ filter is of rank 1.
Keywords:
first prove given analytic filter cal omega set functions omega which represented pointwise limit relative cal sequence omega continuous functions lim cal exactly set borel functions class countable ordinal call rank cal discuss several structural properties rank example prove filter rank
Affiliations des auteurs :
Gabriel Debs 1 ; Jean Saint Raymond 2
@article{10_4064_fm204_3_1,
author = {Gabriel Debs and Jean Saint Raymond},
title = {Filter descriptive classes
of {Borel} functions},
journal = {Fundamenta Mathematicae},
pages = {189--213},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2009},
doi = {10.4064/fm204-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-3-1/}
}
TY - JOUR AU - Gabriel Debs AU - Jean Saint Raymond TI - Filter descriptive classes of Borel functions JO - Fundamenta Mathematicae PY - 2009 SP - 189 EP - 213 VL - 204 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm204-3-1/ DO - 10.4064/fm204-3-1 LA - en ID - 10_4064_fm204_3_1 ER -
Gabriel Debs; Jean Saint Raymond. Filter descriptive classes of Borel functions. Fundamenta Mathematicae, Tome 204 (2009) no. 3, pp. 189-213. doi: 10.4064/fm204-3-1
Cité par Sources :