Stability modulo singular sets
Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 155-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A new concept of stability, closely related to that of structural stability, is introduced and applied to the study of $C^1$ endomorphisms with singularities. A map that is stable in this sense is conjugate to each perturbation that is equivalent to it in a geometric sense. It is shown that this kind of stability implies Axiom A and ${\Omega }$-stability, and that every critical point is wandering. A partial converse is also shown, providing new examples of $C^3$ structurally stable maps.
Keywords:
concept stability closely related structural stability introduced applied study endomorphisms singularities map stable sense conjugate each perturbation equivalent geometric sense shown kind stability implies axiom omega stability every critical point wandering partial converse shown providing examples structurally stable maps
Affiliations des auteurs :
J. Iglesias 1 ; A. Portela 2 ; A. Rovella 3
@article{10_4064_fm204_2_5,
author = {J. Iglesias and A. Portela and A. Rovella},
title = {Stability modulo singular sets},
journal = {Fundamenta Mathematicae},
pages = {155--175},
publisher = {mathdoc},
volume = {204},
number = {2},
year = {2009},
doi = {10.4064/fm204-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-5/}
}
J. Iglesias; A. Portela; A. Rovella. Stability modulo singular sets. Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 155-175. doi: 10.4064/fm204-2-5
Cité par Sources :