On the automorphism group of the countable dense circular order
Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 97-111
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $(C,R)$ be the countable dense circular ordering, and $G$ its automorphism group. It is
shown that certain properties of group elements are first order definable in $G$, and these results are used to
reconstruct $C$ inside $G$, and to demonstrate that its outer automorphism group has order 2. Similar statements
hold for the completion $\overline C$.
Keywords:
countable dense circular ordering its automorphism group shown certain properties group elements first order definable these results reconstruct inside demonstrate its outer automorphism group has order similar statements completion overline
Affiliations des auteurs :
J. K. Truss 1
@article{10_4064_fm204_2_1,
author = {J. K. Truss},
title = {On the automorphism group of the countable dense circular order},
journal = {Fundamenta Mathematicae},
pages = {97--111},
year = {2009},
volume = {204},
number = {2},
doi = {10.4064/fm204-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-1/}
}
J. K. Truss. On the automorphism group of the countable dense circular order. Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 97-111. doi: 10.4064/fm204-2-1
Cité par Sources :