On the automorphism group of the countable dense circular order
Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 97-111.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(C,R)$ be the countable dense circular ordering, and $G$ its automorphism group. It is shown that certain properties of group elements are first order definable in $G$, and these results are used to reconstruct $C$ inside $G$, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion $\overline C$.
DOI : 10.4064/fm204-2-1
Keywords: countable dense circular ordering its automorphism group shown certain properties group elements first order definable these results reconstruct inside demonstrate its outer automorphism group has order similar statements completion overline

J. K. Truss 1

1 Department of Pure Mathematics University of Leeds Leeds, UK
@article{10_4064_fm204_2_1,
     author = {J. K. Truss},
     title = {On the automorphism group of the countable dense circular order},
     journal = {Fundamenta Mathematicae},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2009},
     doi = {10.4064/fm204-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-1/}
}
TY  - JOUR
AU  - J. K. Truss
TI  - On the automorphism group of the countable dense circular order
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 97
EP  - 111
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-1/
DO  - 10.4064/fm204-2-1
LA  - en
ID  - 10_4064_fm204_2_1
ER  - 
%0 Journal Article
%A J. K. Truss
%T On the automorphism group of the countable dense circular order
%J Fundamenta Mathematicae
%D 2009
%P 97-111
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-1/
%R 10.4064/fm204-2-1
%G en
%F 10_4064_fm204_2_1
J. K. Truss. On the automorphism group of the countable dense circular order. Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 97-111. doi : 10.4064/fm204-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-1/

Cité par Sources :