Fixed points on Klein bottle fiber bundles over the circle
Fundamenta Mathematicae, Tome 203 (2009) no. 3, pp. 263-292
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle $S^1$ for spaces which are fiber bundles over $S^1$ and the fiber is the Klein bottle $K$. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over $S^{1}$ has been solved recently.
Keywords:
main purpose work study fixed points fiber preserving maps circle spaces which fiber bundles fiber klein bottle classify maps which deformed fiberwise fixed point map similar problem torus fiber bundles has solved recently
Affiliations des auteurs :
D. L. Gonçalves 1 ; D. Penteado 2 ; J. P. Vieira 3
@article{10_4064_fm203_3_3,
author = {D. L. Gon\c{c}alves and D. Penteado and J. P. Vieira},
title = {Fixed points on {Klein} bottle fiber bundles over the circle},
journal = {Fundamenta Mathematicae},
pages = {263--292},
publisher = {mathdoc},
volume = {203},
number = {3},
year = {2009},
doi = {10.4064/fm203-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm203-3-3/}
}
TY - JOUR AU - D. L. Gonçalves AU - D. Penteado AU - J. P. Vieira TI - Fixed points on Klein bottle fiber bundles over the circle JO - Fundamenta Mathematicae PY - 2009 SP - 263 EP - 292 VL - 203 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm203-3-3/ DO - 10.4064/fm203-3-3 LA - en ID - 10_4064_fm203_3_3 ER -
%0 Journal Article %A D. L. Gonçalves %A D. Penteado %A J. P. Vieira %T Fixed points on Klein bottle fiber bundles over the circle %J Fundamenta Mathematicae %D 2009 %P 263-292 %V 203 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm203-3-3/ %R 10.4064/fm203-3-3 %G en %F 10_4064_fm203_3_3
D. L. Gonçalves; D. Penteado; J. P. Vieira. Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae, Tome 203 (2009) no. 3, pp. 263-292. doi: 10.4064/fm203-3-3
Cité par Sources :