On nonmeasurable selectors of countable group actions
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 281-294
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a set $X$, a countable group $H$ acting on it and a $\sigma $-finite $H$-invariant measure $m$ on $X$, we study conditions which imply that each selector of $H$-orbits is nonmeasurable with respect to any $H$-invariant extension of $m$.
Keywords:
given set countable group acting sigma finite h invariant measure study conditions which imply each selector h orbits nonmeasurable respect h invariant extension
Affiliations des auteurs :
Piotr Zakrzewski 1
@article{10_4064_fm202_3_5,
author = {Piotr Zakrzewski},
title = {On nonmeasurable selectors of countable group actions},
journal = {Fundamenta Mathematicae},
pages = {281--294},
publisher = {mathdoc},
volume = {202},
number = {3},
year = {2009},
doi = {10.4064/fm202-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-5/}
}
Piotr Zakrzewski. On nonmeasurable selectors of countable group actions. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 281-294. doi: 10.4064/fm202-3-5
Cité par Sources :