Existence of quadratic Hubbard trees
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 251-279
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A (quadratic) Hubbard tree is an invariant tree connecting the critical orbit
within the Julia set of a postcritically finite (quadratic) polynomial.
It is easy to read off the kneading sequences from a quadratic Hubbard tree;
the result in this paper handles the converse direction.Not every sequence on two symbols is realized as the kneading sequence of a
real or complex quadratic
polynomial. Milnor and Thurston classified all real-admissible
sequences, and we give a classification of all complex-admissible
sequences in \cite{BS}. In order to do this, we show here that every
periodic or preperiodic sequence is realized by a unique abstract
Hubbard tree. Real or complex admissibility of the sequence depends
on whether this abstract tree can be embedded into the real line or
complex plane so that the dynamics preserves the embedded, and this
can be studied in terms of branch points of the abstract Hubbard tree.
Keywords:
quadratic hubbard tree invariant tree connecting critical orbit within julia set postcritically finite quadratic polynomial easy read off kneading sequences quadratic hubbard tree result paper handles converse direction every sequence symbols realized kneading sequence real complex quadratic polynomial milnor thurston classified real admissible sequences classification complex admissible sequences cite order here every periodic preperiodic sequence realized unique abstract hubbard tree real complex admissibility sequence depends whether abstract tree embedded real line complex plane dynamics preserves embedded studied terms branch points abstract hubbard tree
Affiliations des auteurs :
Henk Bruin 1 ; Alexandra Kaffl 2 ; Dierk Schleicher 2
@article{10_4064_fm202_3_4,
author = {Henk Bruin and Alexandra Kaffl and Dierk Schleicher},
title = {Existence of quadratic {Hubbard} trees},
journal = {Fundamenta Mathematicae},
pages = {251--279},
publisher = {mathdoc},
volume = {202},
number = {3},
year = {2009},
doi = {10.4064/fm202-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/}
}
TY - JOUR AU - Henk Bruin AU - Alexandra Kaffl AU - Dierk Schleicher TI - Existence of quadratic Hubbard trees JO - Fundamenta Mathematicae PY - 2009 SP - 251 EP - 279 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/ DO - 10.4064/fm202-3-4 LA - en ID - 10_4064_fm202_3_4 ER -
Henk Bruin; Alexandra Kaffl; Dierk Schleicher. Existence of quadratic Hubbard trees. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 251-279. doi: 10.4064/fm202-3-4
Cité par Sources :