Existence of quadratic Hubbard trees
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 251-279.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A (quadratic) Hubbard tree is an invariant tree connecting the critical orbit within the Julia set of a postcritically finite (quadratic) polynomial. It is easy to read off the kneading sequences from a quadratic Hubbard tree; the result in this paper handles the converse direction.Not every sequence on two symbols is realized as the kneading sequence of a real or complex quadratic polynomial. Milnor and Thurston classified all real-admissible sequences, and we give a classification of all complex-admissible sequences in \cite{BS}. In order to do this, we show here that every periodic or preperiodic sequence is realized by a unique abstract Hubbard tree. Real or complex admissibility of the sequence depends on whether this abstract tree can be embedded into the real line or complex plane so that the dynamics preserves the embedded, and this can be studied in terms of branch points of the abstract Hubbard tree.
DOI : 10.4064/fm202-3-4
Keywords: quadratic hubbard tree invariant tree connecting critical orbit within julia set postcritically finite quadratic polynomial easy read off kneading sequences quadratic hubbard tree result paper handles converse direction every sequence symbols realized kneading sequence real complex quadratic polynomial milnor thurston classified real admissible sequences classification complex admissible sequences cite order here every periodic preperiodic sequence realized unique abstract hubbard tree real complex admissibility sequence depends whether abstract tree embedded real line complex plane dynamics preserves embedded studied terms branch points abstract hubbard tree

Henk Bruin 1 ; Alexandra Kaffl 2 ; Dierk Schleicher 2

1 Department of Mathematics University of Surrey Guildford GU2 7XH, United Kingdom
2 School of Engineering and Science Jacobs University Bremen P.O. Box 750 561 D-28725 Bremen, Germany
@article{10_4064_fm202_3_4,
     author = {Henk Bruin and Alexandra Kaffl and Dierk Schleicher},
     title = {Existence of quadratic {Hubbard} trees},
     journal = {Fundamenta Mathematicae},
     pages = {251--279},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2009},
     doi = {10.4064/fm202-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/}
}
TY  - JOUR
AU  - Henk Bruin
AU  - Alexandra Kaffl
AU  - Dierk Schleicher
TI  - Existence of quadratic Hubbard trees
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 251
EP  - 279
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/
DO  - 10.4064/fm202-3-4
LA  - en
ID  - 10_4064_fm202_3_4
ER  - 
%0 Journal Article
%A Henk Bruin
%A Alexandra Kaffl
%A Dierk Schleicher
%T Existence of quadratic Hubbard trees
%J Fundamenta Mathematicae
%D 2009
%P 251-279
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/
%R 10.4064/fm202-3-4
%G en
%F 10_4064_fm202_3_4
Henk Bruin; Alexandra Kaffl; Dierk Schleicher. Existence of quadratic Hubbard trees. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 251-279. doi : 10.4064/fm202-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-4/

Cité par Sources :