Iterations of the Frobenius–Perron operator
for parabolic random maps
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 241-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe totally dissipative parabolic extensions of the one-sided Bernoulli shift. For the fractional linear case we obtain conservative and totally dissipative families of extensions. Here, the property of conservativity seems to be extremely unstable.
Keywords:
describe totally dissipative parabolic extensions one sided bernoulli shift fractional linear obtain conservative totally dissipative families extensions here property conservativity seems extremely unstable
Affiliations des auteurs :
Zbigniew S. Kowalski 1
@article{10_4064_fm202_3_3,
author = {Zbigniew S. Kowalski},
title = {Iterations of the {Frobenius{\textendash}Perron} operator
for parabolic random maps},
journal = {Fundamenta Mathematicae},
pages = {241--250},
publisher = {mathdoc},
volume = {202},
number = {3},
year = {2009},
doi = {10.4064/fm202-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/}
}
TY - JOUR AU - Zbigniew S. Kowalski TI - Iterations of the Frobenius–Perron operator for parabolic random maps JO - Fundamenta Mathematicae PY - 2009 SP - 241 EP - 250 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/ DO - 10.4064/fm202-3-3 LA - en ID - 10_4064_fm202_3_3 ER -
Zbigniew S. Kowalski. Iterations of the Frobenius–Perron operator for parabolic random maps. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 241-250. doi: 10.4064/fm202-3-3
Cité par Sources :