Iterations of the Frobenius–Perron operator for parabolic random maps
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 241-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe totally dissipative parabolic extensions of the one-sided Bernoulli shift. For the fractional linear case we obtain conservative and totally dissipative families of extensions. Here, the property of conservativity seems to be extremely unstable.
DOI : 10.4064/fm202-3-3
Keywords: describe totally dissipative parabolic extensions one sided bernoulli shift fractional linear obtain conservative totally dissipative families extensions here property conservativity seems extremely unstable

Zbigniew S. Kowalski 1

1 Institute of Mathematics and Computer Science Wroc/law University of Technology Wybrzeże St. Wyspia/nskiego 27 50-370 Wroc/law, Poland
@article{10_4064_fm202_3_3,
     author = {Zbigniew S. Kowalski},
     title = {Iterations of the {Frobenius{\textendash}Perron} operator
 for parabolic random maps},
     journal = {Fundamenta Mathematicae},
     pages = {241--250},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2009},
     doi = {10.4064/fm202-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/}
}
TY  - JOUR
AU  - Zbigniew S. Kowalski
TI  - Iterations of the Frobenius–Perron operator
 for parabolic random maps
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 241
EP  - 250
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/
DO  - 10.4064/fm202-3-3
LA  - en
ID  - 10_4064_fm202_3_3
ER  - 
%0 Journal Article
%A Zbigniew S. Kowalski
%T Iterations of the Frobenius–Perron operator
 for parabolic random maps
%J Fundamenta Mathematicae
%D 2009
%P 241-250
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/
%R 10.4064/fm202-3-3
%G en
%F 10_4064_fm202_3_3
Zbigniew S. Kowalski. Iterations of the Frobenius–Perron operator
 for parabolic random maps. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 241-250. doi : 10.4064/fm202-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-3/

Cité par Sources :