Pure virtual braids homotopic to the identity braid
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 225-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two virtual link diagrams are homotopic if one may be transformed into the other by a sequence of virtual Reidemeister moves, classical Reidemeister moves, and self crossing changes. We recall the pure virtual braid group. We then describe the set of pure virtual braids that are homotopic to the identity braid.
Keywords:
virtual link diagrams homotopic may transformed other sequence virtual reidemeister moves classical reidemeister moves self crossing changes recall pure virtual braid group describe set pure virtual braids homotopic identity braid
Affiliations des auteurs :
H. A. Dye 1
@article{10_4064_fm202_3_2,
author = {H. A. Dye},
title = {Pure virtual braids homotopic to the identity braid},
journal = {Fundamenta Mathematicae},
pages = {225--239},
publisher = {mathdoc},
volume = {202},
number = {3},
year = {2009},
doi = {10.4064/fm202-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-2/}
}
H. A. Dye. Pure virtual braids homotopic to the identity braid. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 225-239. doi: 10.4064/fm202-3-2
Cité par Sources :