Compact spaces that do not map onto finite products
Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide examples of nonseparable compact spaces with the property that any continuous image which is homeomorphic to a finite product of spaces has a maximal prescribed number of nonseparable factors.
DOI : 10.4064/fm202-1-4
Keywords: provide examples nonseparable compact spaces property continuous image which homeomorphic finite product spaces has maximal prescribed number nonseparable factors

Antonio Avilés 1

1 Université Paris 7 UMR 7056 2, Place Jussieu, Case 7012 75251 Paris, France
@article{10_4064_fm202_1_4,
     author = {Antonio Avil\'es},
     title = {Compact spaces that do not map onto finite products},
     journal = {Fundamenta Mathematicae},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2009},
     doi = {10.4064/fm202-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/}
}
TY  - JOUR
AU  - Antonio Avilés
TI  - Compact spaces that do not map onto finite products
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 81
EP  - 96
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/
DO  - 10.4064/fm202-1-4
LA  - en
ID  - 10_4064_fm202_1_4
ER  - 
%0 Journal Article
%A Antonio Avilés
%T Compact spaces that do not map onto finite products
%J Fundamenta Mathematicae
%D 2009
%P 81-96
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/
%R 10.4064/fm202-1-4
%G en
%F 10_4064_fm202_1_4
Antonio Avilés. Compact spaces that do not map onto finite products. Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96. doi : 10.4064/fm202-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/

Cité par Sources :