Compact spaces that do not map onto finite products
Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We provide examples of nonseparable compact spaces with the property that any continuous image which is homeomorphic to a finite product of spaces has a maximal prescribed number of nonseparable factors.
Keywords:
provide examples nonseparable compact spaces property continuous image which homeomorphic finite product spaces has maximal prescribed number nonseparable factors
Affiliations des auteurs :
Antonio Avilés  1
@article{10_4064_fm202_1_4,
author = {Antonio Avil\'es},
title = {Compact spaces that do not map onto finite products},
journal = {Fundamenta Mathematicae},
pages = {81--96},
year = {2009},
volume = {202},
number = {1},
doi = {10.4064/fm202-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/}
}
Antonio Avilés. Compact spaces that do not map onto finite products. Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96. doi: 10.4064/fm202-1-4
Cité par Sources :