Compact spaces that do not map onto finite products
Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide examples of nonseparable compact spaces with the property that any continuous image which is homeomorphic to a finite product of spaces has a maximal prescribed number of nonseparable factors.
Keywords:
provide examples nonseparable compact spaces property continuous image which homeomorphic finite product spaces has maximal prescribed number nonseparable factors
Affiliations des auteurs :
Antonio Avilés 1
@article{10_4064_fm202_1_4,
author = {Antonio Avil\'es},
title = {Compact spaces that do not map onto finite products},
journal = {Fundamenta Mathematicae},
pages = {81--96},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2009},
doi = {10.4064/fm202-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-4/}
}
Antonio Avilés. Compact spaces that do not map onto finite products. Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 81-96. doi: 10.4064/fm202-1-4
Cité par Sources :