An indecomposable Banach space of
continuous functions which has small density
Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 43-63
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space $K$ of weight $\omega _12^\omega $ such that every operator on the Banach space of continuous functions on $K$ is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on $K$ is indecomposable.
Keywords:
using method forcing construct model zfc where does where there exists connected compact topological space weight omega omega every operator banach space continuous functions multiplication continuous function plus weakly compact operator particular banach space continuous functions indecomposable
Affiliations des auteurs :
Rogério Augusto dos Santos Fajardo  1
@article{10_4064_fm202_1_2,
author = {Rog\'erio Augusto dos Santos Fajardo},
title = {An indecomposable {Banach} space of
continuous functions which has small density},
journal = {Fundamenta Mathematicae},
pages = {43--63},
year = {2009},
volume = {202},
number = {1},
doi = {10.4064/fm202-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/}
}
TY - JOUR AU - Rogério Augusto dos Santos Fajardo TI - An indecomposable Banach space of continuous functions which has small density JO - Fundamenta Mathematicae PY - 2009 SP - 43 EP - 63 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/ DO - 10.4064/fm202-1-2 LA - en ID - 10_4064_fm202_1_2 ER -
%0 Journal Article %A Rogério Augusto dos Santos Fajardo %T An indecomposable Banach space of continuous functions which has small density %J Fundamenta Mathematicae %D 2009 %P 43-63 %V 202 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/ %R 10.4064/fm202-1-2 %G en %F 10_4064_fm202_1_2
Rogério Augusto dos Santos Fajardo. An indecomposable Banach space of continuous functions which has small density. Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 43-63. doi: 10.4064/fm202-1-2
Cité par Sources :