An indecomposable Banach space of continuous functions which has small density
Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 43-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space $K$ of weight $\omega _12^\omega $ such that every operator on the Banach space of continuous functions on $K$ is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on $K$ is indecomposable.
DOI : 10.4064/fm202-1-2
Keywords: using method forcing construct model zfc where does where there exists connected compact topological space weight omega omega every operator banach space continuous functions multiplication continuous function plus weakly compact operator particular banach space continuous functions indecomposable

Rogério Augusto dos Santos Fajardo 1

1 Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão, 1010 CEP 05508-900 São Paulo, SP, Brazil
@article{10_4064_fm202_1_2,
     author = {Rog\'erio Augusto dos Santos Fajardo},
     title = {An indecomposable {Banach} space of
 continuous functions which has small density},
     journal = {Fundamenta Mathematicae},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2009},
     doi = {10.4064/fm202-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/}
}
TY  - JOUR
AU  - Rogério Augusto dos Santos Fajardo
TI  - An indecomposable Banach space of
 continuous functions which has small density
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 43
EP  - 63
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/
DO  - 10.4064/fm202-1-2
LA  - en
ID  - 10_4064_fm202_1_2
ER  - 
%0 Journal Article
%A Rogério Augusto dos Santos Fajardo
%T An indecomposable Banach space of
 continuous functions which has small density
%J Fundamenta Mathematicae
%D 2009
%P 43-63
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/
%R 10.4064/fm202-1-2
%G en
%F 10_4064_fm202_1_2
Rogério Augusto dos Santos Fajardo. An indecomposable Banach space of
 continuous functions which has small density. Fundamenta Mathematicae, Tome 202 (2009) no. 1, pp. 43-63. doi : 10.4064/fm202-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm202-1-2/

Cité par Sources :