The consistency of $\mathfrak b=\kappa$ and $\mathfrak s=\kappa^+$
Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 283-293.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using finite support iteration of ccc partial orders we provide a model of ${\mathfrak b}=\kappa{\mathfrak s}=\kappa^+$ for $\kappa$ an arbitrary regular, uncountable cardinal.
DOI : 10.4064/fm201-3-5
Keywords: using finite support iteration ccc partial orders provide model mathfrak kappa mathfrak kappa kappa arbitrary regular uncountable cardinal

Vera Fischer 1 ; Juris Steprāns 2

1 University of Vienna Kurt Gödel Research Center for Mathematical Logic Währinger Straße 25 A-1090 Wien, Austria
2 Department of Mathematics York University 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
@article{10_4064_fm201_3_5,
     author = {Vera Fischer and Juris Stepr\={a}ns},
     title = {The consistency
of $\mathfrak
b=\kappa$ and $\mathfrak
s=\kappa^+$},
     journal = {Fundamenta Mathematicae},
     pages = {283--293},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2008},
     doi = {10.4064/fm201-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-5/}
}
TY  - JOUR
AU  - Vera Fischer
AU  - Juris Steprāns
TI  - The consistency
of $\mathfrak
b=\kappa$ and $\mathfrak
s=\kappa^+$
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 283
EP  - 293
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-5/
DO  - 10.4064/fm201-3-5
LA  - en
ID  - 10_4064_fm201_3_5
ER  - 
%0 Journal Article
%A Vera Fischer
%A Juris Steprāns
%T The consistency
of $\mathfrak
b=\kappa$ and $\mathfrak
s=\kappa^+$
%J Fundamenta Mathematicae
%D 2008
%P 283-293
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-5/
%R 10.4064/fm201-3-5
%G en
%F 10_4064_fm201_3_5
Vera Fischer; Juris Steprāns. The consistency
of $\mathfrak
b=\kappa$ and $\mathfrak
s=\kappa^+$. Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 283-293. doi : 10.4064/fm201-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-5/

Cité par Sources :