Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion
Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 217-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every rational homology $3$-sphere with $H_1(M,\mathbb Z) =(\mathbb Z/2\mathbb Z)^n$ we construct a unified invariant (which takes values in a certain cyclotomic completion of a polynomial ring) such that the evaluation of this invariant at any odd root of unity provides the SO(3) Witten–Reshetikhin–Turaev invariant at this root, and at any even root of unity the SU(2) quantum invariant. Moreover, this unified invariant splits into a sum of the refined unified invariants dominating spin and cohomological refinements of quantum SU(2) invariants. New results on the Ohtsuki series and the integrality of quantum invariants are the main applications of our construction.
DOI : 10.4064/fm201-3-2
Keywords: every rational homology sphere mathbb mathbb mathbb construct unified invariant which takes values certain cyclotomic completion polynomial ring evaluation invariant odd root unity provides witten reshetikhin turaev invariant root even root unity quantum invariant moreover unified invariant splits sum refined unified invariants dominating spin cohomological refinements quantum invariants results ohtsuki series integrality quantum invariants main applications construction

Anna Beliakova 1 ; Christian Blanchet 2 ; Thang T. Q. Lê 3

1 Institut für Mathematik Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich, Switzerland
2 Institut de Mathématiques de Jussieu (UMR-CNRS 7586) Université Paris Diderot 175 rue du Chevaleret F-75013 Paris, France
3 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160, U.S.A.
@article{10_4064_fm201_3_2,
     author = {Anna Beliakova and Christian Blanchet and Thang T. Q. L\^e},
     title = {Unified
quantum invariants and their refinements
for homology  3-spheres with 2-torsion},
     journal = {Fundamenta Mathematicae},
     pages = {217--239},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2008},
     doi = {10.4064/fm201-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-2/}
}
TY  - JOUR
AU  - Anna Beliakova
AU  - Christian Blanchet
AU  - Thang T. Q. Lê
TI  - Unified
quantum invariants and their refinements
for homology  3-spheres with 2-torsion
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 217
EP  - 239
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-2/
DO  - 10.4064/fm201-3-2
LA  - en
ID  - 10_4064_fm201_3_2
ER  - 
%0 Journal Article
%A Anna Beliakova
%A Christian Blanchet
%A Thang T. Q. Lê
%T Unified
quantum invariants and their refinements
for homology  3-spheres with 2-torsion
%J Fundamenta Mathematicae
%D 2008
%P 217-239
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-2/
%R 10.4064/fm201-3-2
%G en
%F 10_4064_fm201_3_2
Anna Beliakova; Christian Blanchet; Thang T. Q. Lê. Unified
quantum invariants and their refinements
for homology  3-spheres with 2-torsion. Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 217-239. doi : 10.4064/fm201-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-2/

Cité par Sources :