Perfect set theorems
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 179-195.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study splitting, infinitely often equal (ioe) and refining families from the descriptive point of view, i.e. we try to characterize closed, Borel or analytic such families by proving perfect set theorems. We succeed for $G_\delta $ hereditary splitting families and for analytic countably ioe families. We construct several examples of small closed ioe and refining families.
DOI : 10.4064/fm201-2-6
Keywords: study splitting infinitely often equal ioe refining families descriptive point view try characterize closed borel analytic families proving perfect set theorems succeed delta hereditary splitting families analytic countably ioe families construct several examples small closed ioe refining families

Otmar Spinas 1

1 Mathematisches Seminar Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany
@article{10_4064_fm201_2_6,
     author = {Otmar Spinas},
     title = {Perfect set theorems},
     journal = {Fundamenta Mathematicae},
     pages = {179--195},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2008},
     doi = {10.4064/fm201-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-6/}
}
TY  - JOUR
AU  - Otmar Spinas
TI  - Perfect set theorems
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 179
EP  - 195
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-6/
DO  - 10.4064/fm201-2-6
LA  - en
ID  - 10_4064_fm201_2_6
ER  - 
%0 Journal Article
%A Otmar Spinas
%T Perfect set theorems
%J Fundamenta Mathematicae
%D 2008
%P 179-195
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-6/
%R 10.4064/fm201-2-6
%G en
%F 10_4064_fm201_2_6
Otmar Spinas. Perfect set theorems. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 179-195. doi : 10.4064/fm201-2-6. http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-6/

Cité par Sources :