A countable dense homogeneous space with a
dense rigid open subspace
Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there is a Polish space which is countable dense homogeneous but contains a dense open rigid connected subset. This answers several questions of Fitzpatrick and Zhou.
Keywords:
there polish space which countable dense homogeneous contains dense rigid connected subset answers several questions fitzpatrick zhou
Affiliations des auteurs :
Jan van Mill 1
@article{10_4064_fm201_1_3,
author = {Jan van Mill},
title = {A countable dense homogeneous space with a
dense rigid open subspace},
journal = {Fundamenta Mathematicae},
pages = {91--98},
publisher = {mathdoc},
volume = {201},
number = {1},
year = {2008},
doi = {10.4064/fm201-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/}
}
TY - JOUR AU - Jan van Mill TI - A countable dense homogeneous space with a dense rigid open subspace JO - Fundamenta Mathematicae PY - 2008 SP - 91 EP - 98 VL - 201 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/ DO - 10.4064/fm201-1-3 LA - en ID - 10_4064_fm201_1_3 ER -
Jan van Mill. A countable dense homogeneous space with a dense rigid open subspace. Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98. doi: 10.4064/fm201-1-3
Cité par Sources :