A countable dense homogeneous space with a
dense rigid open subspace
Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that there is a Polish space which is countable dense homogeneous but contains a dense open rigid connected subset. This answers several questions of Fitzpatrick and Zhou.
Keywords:
there polish space which countable dense homogeneous contains dense rigid connected subset answers several questions fitzpatrick zhou
Affiliations des auteurs :
Jan van Mill  1
@article{10_4064_fm201_1_3,
author = {Jan van Mill},
title = {A countable dense homogeneous space with a
dense rigid open subspace},
journal = {Fundamenta Mathematicae},
pages = {91--98},
year = {2008},
volume = {201},
number = {1},
doi = {10.4064/fm201-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/}
}
Jan van Mill. A countable dense homogeneous space with a dense rigid open subspace. Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98. doi: 10.4064/fm201-1-3
Cité par Sources :