A countable dense homogeneous space with a dense rigid open subspace
Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there is a Polish space which is countable dense homogeneous but contains a dense open rigid connected subset. This answers several questions of Fitzpatrick and Zhou.
DOI : 10.4064/fm201-1-3
Keywords: there polish space which countable dense homogeneous contains dense rigid connected subset answers several questions fitzpatrick zhou

Jan van Mill 1

1 Department of Mathematics Faculty of Sciences VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam, The Netherlands
@article{10_4064_fm201_1_3,
     author = {Jan van Mill},
     title = {A countable dense homogeneous space with a
 dense rigid open subspace},
     journal = {Fundamenta Mathematicae},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2008},
     doi = {10.4064/fm201-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/}
}
TY  - JOUR
AU  - Jan van Mill
TI  - A countable dense homogeneous space with a
 dense rigid open subspace
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 91
EP  - 98
VL  - 201
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/
DO  - 10.4064/fm201-1-3
LA  - en
ID  - 10_4064_fm201_1_3
ER  - 
%0 Journal Article
%A Jan van Mill
%T A countable dense homogeneous space with a
 dense rigid open subspace
%J Fundamenta Mathematicae
%D 2008
%P 91-98
%V 201
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/
%R 10.4064/fm201-1-3
%G en
%F 10_4064_fm201_1_3
Jan van Mill. A countable dense homogeneous space with a
 dense rigid open subspace. Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 91-98. doi : 10.4064/fm201-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-3/

Cité par Sources :