Domain representability of $C_{\rm p}(X)$
Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 185-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $C_{\rm p}(X)$ be the space of continuous
real-valued functions on $X$, with the topology of pointwise
convergence. We consider the following three properties of a space $X$:
(a) $C_{\rm p}(X)$ is Scott-domain representable;
(b) $C_{\rm p}(X)$ is domain
representable; (c) $X$ is discrete. We show that those three
properties are mutually equivalent in any normal $T_1$-space, and that
properties (a) and (c) are equivalent in any completely regular
pseudo-normal space. For normal spaces, this generalizes the recent
result of Tkachuk that $C_{\rm p}(X)$ is subcompact if and only if $X$ is
discrete.
Keywords:
space continuous real valued functions topology pointwise convergence consider following three properties space nbsp scott domain representable domain representable discrete those three properties mutually equivalent normal space properties equivalent completely regular pseudo normal space normal spaces generalizes recent result tkachuk subcompact only discrete
Affiliations des auteurs :
Harold Bennett 1 ; David Lutzer 2
@article{10_4064_fm200_2_5,
author = {Harold Bennett and David Lutzer},
title = {Domain representability of $C_{\rm p}(X)$},
journal = {Fundamenta Mathematicae},
pages = {185--199},
publisher = {mathdoc},
volume = {200},
number = {2},
year = {2008},
doi = {10.4064/fm200-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-5/}
}
Harold Bennett; David Lutzer. Domain representability of $C_{\rm p}(X)$. Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 185-199. doi: 10.4064/fm200-2-5
Cité par Sources :