Domain representability of $C_{\rm p}(X)$
Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 185-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $C_{\rm p}(X)$ be the space of continuous real-valued functions on $X$, with the topology of pointwise convergence. We consider the following three properties of a space $X$: (a) $C_{\rm p}(X)$ is Scott-domain representable; (b) $C_{\rm p}(X)$ is domain representable; (c) $X$ is discrete. We show that those three properties are mutually equivalent in any normal $T_1$-space, and that properties (a) and (c) are equivalent in any completely regular pseudo-normal space. For normal spaces, this generalizes the recent result of Tkachuk that $C_{\rm p}(X)$ is subcompact if and only if $X$ is discrete.
DOI : 10.4064/fm200-2-5
Keywords: space continuous real valued functions topology pointwise convergence consider following three properties space nbsp scott domain representable domain representable discrete those three properties mutually equivalent normal space properties equivalent completely regular pseudo normal space normal spaces generalizes recent result tkachuk subcompact only discrete

Harold Bennett 1 ; David Lutzer 2

1 Mathematics Department Texas Tech University Lubbock, TX 79409, U.S.A.
2 Mathematics Department College of William and Mary Williamsburg, VA 23187-8795, U.S.A.
@article{10_4064_fm200_2_5,
     author = {Harold Bennett and David Lutzer},
     title = {Domain representability of  $C_{\rm p}(X)$},
     journal = {Fundamenta Mathematicae},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2008},
     doi = {10.4064/fm200-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-5/}
}
TY  - JOUR
AU  - Harold Bennett
AU  - David Lutzer
TI  - Domain representability of  $C_{\rm p}(X)$
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 185
EP  - 199
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-5/
DO  - 10.4064/fm200-2-5
LA  - en
ID  - 10_4064_fm200_2_5
ER  - 
%0 Journal Article
%A Harold Bennett
%A David Lutzer
%T Domain representability of  $C_{\rm p}(X)$
%J Fundamenta Mathematicae
%D 2008
%P 185-199
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-5/
%R 10.4064/fm200-2-5
%G en
%F 10_4064_fm200_2_5
Harold Bennett; David Lutzer. Domain representability of  $C_{\rm p}(X)$. Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 185-199. doi : 10.4064/fm200-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-5/

Cité par Sources :