On maximizing measures of homeomorphisms on compact manifolds
Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 145-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that given a compact $n$-dimensional connected Riemannian manifold $X$ and a continuous function $g:X\rightarrow \mathbb R$, there exists a dense subset of the space of homeomorphisms of $X$ such that for all $T$ in this subset, the integral $\int_X g\, d\mu$, considered as a function on the space of all $T$-invariant Borel probability measures $\mu$, attains its maximum on a measure supported on a periodic orbit.
DOI : 10.4064/fm200-2-3
Keywords: prove given compact n dimensional connected riemannian manifold continuous function rightarrow mathbb there exists dense subset space homeomorphisms subset integral int considered function space t invariant borel probability measures attains its maximum measure supported periodic orbit

Fábio Armando Tal 1 ; Salvador Addas-Zanata 1

1 Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão 1010, Cidade Universitária 05508-090 São Paulo, SP, Brazil
@article{10_4064_fm200_2_3,
     author = {F\'abio Armando Tal and Salvador Addas-Zanata},
     title = {On maximizing measures of homeomorphisms on compact manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {145--159},
     publisher = {mathdoc},
     volume = {200},
     number = {2},
     year = {2008},
     doi = {10.4064/fm200-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-3/}
}
TY  - JOUR
AU  - Fábio Armando Tal
AU  - Salvador Addas-Zanata
TI  - On maximizing measures of homeomorphisms on compact manifolds
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 145
EP  - 159
VL  - 200
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-3/
DO  - 10.4064/fm200-2-3
LA  - en
ID  - 10_4064_fm200_2_3
ER  - 
%0 Journal Article
%A Fábio Armando Tal
%A Salvador Addas-Zanata
%T On maximizing measures of homeomorphisms on compact manifolds
%J Fundamenta Mathematicae
%D 2008
%P 145-159
%V 200
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-3/
%R 10.4064/fm200-2-3
%G en
%F 10_4064_fm200_2_3
Fábio Armando Tal; Salvador Addas-Zanata. On maximizing measures of homeomorphisms on compact manifolds. Fundamenta Mathematicae, Tome 200 (2008) no. 2, pp. 145-159. doi : 10.4064/fm200-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm200-2-3/

Cité par Sources :