A description based on Schubert classes of
cohomology of flag manifolds
Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 273-293
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the integral cohomology rings of the flag manifolds of types $B_{n}, D_{n}, G_{2}$ and $F_{4}$ in terms of their Schubert classes. The main tool is the divided difference operators of Bernstein–Gelfand–Gelfand and Demazure. As an application, we compute the Chow rings of the corresponding complex algebraic groups, recovering thereby the results of R. Marlin.
Keywords:
describe integral cohomology rings flag manifolds types terms their schubert classes main tool divided difference operators bernstein gelfand gelfand demazure application compute chow rings corresponding complex algebraic groups recovering thereby results marlin
Affiliations des auteurs :
Masaki Nakagawa 1
@article{10_4064_fm199_3_5,
author = {Masaki Nakagawa},
title = {A description based on {Schubert} classes of
cohomology of flag manifolds},
journal = {Fundamenta Mathematicae},
pages = {273--293},
publisher = {mathdoc},
volume = {199},
number = {3},
year = {2008},
doi = {10.4064/fm199-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-5/}
}
TY - JOUR AU - Masaki Nakagawa TI - A description based on Schubert classes of cohomology of flag manifolds JO - Fundamenta Mathematicae PY - 2008 SP - 273 EP - 293 VL - 199 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-5/ DO - 10.4064/fm199-3-5 LA - en ID - 10_4064_fm199_3_5 ER -
Masaki Nakagawa. A description based on Schubert classes of cohomology of flag manifolds. Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 273-293. doi: 10.4064/fm199-3-5
Cité par Sources :