Embedded surfaces in the 3-torus
Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 195-212.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Those maps of a closed surface to the three-dimensional torus that are homotopic to embeddings are characterized. Particular attention is paid to the more involved case when the surface is nonorientable.
DOI : 10.4064/fm199-3-1
Keywords: those maps closed surface three dimensional torus homotopic embeddings characterized particular attention paid involved surface nonorientable

Allan L. Edmonds 1

1 Department of Mathematics Indiana University Bloomington, IN 47405, U.S.A.
@article{10_4064_fm199_3_1,
     author = {Allan L. Edmonds},
     title = {Embedded surfaces in the 3-torus},
     journal = {Fundamenta Mathematicae},
     pages = {195--212},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2008},
     doi = {10.4064/fm199-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-1/}
}
TY  - JOUR
AU  - Allan L. Edmonds
TI  - Embedded surfaces in the 3-torus
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 195
EP  - 212
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-1/
DO  - 10.4064/fm199-3-1
LA  - en
ID  - 10_4064_fm199_3_1
ER  - 
%0 Journal Article
%A Allan L. Edmonds
%T Embedded surfaces in the 3-torus
%J Fundamenta Mathematicae
%D 2008
%P 195-212
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-1/
%R 10.4064/fm199-3-1
%G en
%F 10_4064_fm199_3_1
Allan L. Edmonds. Embedded surfaces in the 3-torus. Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 195-212. doi : 10.4064/fm199-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-1/

Cité par Sources :