Linearly rigid metric spaces and the embedding problem
Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 177-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the problem of isometric embedding of metric spaces
into Banach spaces, and introduce and study the remarkable class
of so-called linearly rigid metric spaces: these are the spaces that
admit a unique, up to isometry, linearly dense isometric embedding
into a Banach space. The first nontrivial example of such a space
was given by R. Holmes; he proved that the universal Urysohn space
has this property. We give a criterion of linear rigidity of a
metric space, which allows us to give a simple proof of the linear
rigidity of the Urysohn space and some other metric spaces.
Various properties of linearly rigid spaces and related
spaces are considered.
Keywords:
consider problem isometric embedding metric spaces banach spaces introduce study remarkable class so called linearly rigid metric spaces these spaces admit unique isometry linearly dense isometric embedding banach space first nontrivial example space given holmes proved universal urysohn space has property criterion linear rigidity metric space which allows simple proof linear rigidity urysohn space other metric spaces various properties linearly rigid spaces related spaces considered
Affiliations des auteurs :
J. Melleray 1 ; F. V. Petrov 2 ; A. M. Vershik 2
@article{10_4064_fm199_2_6,
author = {J. Melleray and F. V. Petrov and A. M. Vershik},
title = {Linearly rigid metric spaces and the embedding problem},
journal = {Fundamenta Mathematicae},
pages = {177--194},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2008},
doi = {10.4064/fm199-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-6/}
}
TY - JOUR AU - J. Melleray AU - F. V. Petrov AU - A. M. Vershik TI - Linearly rigid metric spaces and the embedding problem JO - Fundamenta Mathematicae PY - 2008 SP - 177 EP - 194 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-6/ DO - 10.4064/fm199-2-6 LA - en ID - 10_4064_fm199_2_6 ER -
J. Melleray; F. V. Petrov; A. M. Vershik. Linearly rigid metric spaces and the embedding problem. Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 177-194. doi: 10.4064/fm199-2-6
Cité par Sources :