$F_{\sigma}$-additive covers of Čech complete and
scattered-$K$-analytic spaces
Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 131-138
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that an $F_\sigma $-additive cover of a
Čech complete, or more generally scattered-$K$-analytic space, has a $\sigma $-scattered refinement. This generalizes results of G. Koumoullis and R. W. Hansell.
Keywords:
prove sigma additive cover ech complete generally scattered k analytic space has sigma scattered refinement generalizes results koumoullis hansell
Affiliations des auteurs :
Jiří Spurný  1
@article{10_4064_fm199_2_3,
author = {Ji\v{r}{\'\i} Spurn\'y},
title = {$F_{\sigma}$-additive covers of {\v{C}ech} complete and
scattered-$K$-analytic spaces},
journal = {Fundamenta Mathematicae},
pages = {131--138},
year = {2008},
volume = {199},
number = {2},
doi = {10.4064/fm199-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-3/}
}
TY - JOUR
AU - Jiří Spurný
TI - $F_{\sigma}$-additive covers of Čech complete and
scattered-$K$-analytic spaces
JO - Fundamenta Mathematicae
PY - 2008
SP - 131
EP - 138
VL - 199
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-3/
DO - 10.4064/fm199-2-3
LA - en
ID - 10_4064_fm199_2_3
ER -
Jiří Spurný. $F_{\sigma}$-additive covers of Čech complete and
scattered-$K$-analytic spaces. Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 131-138. doi: 10.4064/fm199-2-3
Cité par Sources :