Non-existence of
absolutely continuous invariant probabilities for exponential maps
Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 283-287
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that for entire maps of the form $z \mapsto \lambda \exp(z)$
such that the orbit of zero is bounded and Lebesgue almost
every point is transitive, no absolutely continuous invariant
probability measure can exist. This answers a long-standing open
problem.
Keywords:
entire maps form mapsto lambda exp orbit zero bounded lebesgue almost every point transitive absolutely continuous invariant probability measure exist answers long standing problem
Affiliations des auteurs :
Neil Dobbs 1 ; Bart/lomiej Skorulski 2
@article{10_4064_fm198_3_6,
author = {Neil Dobbs and Bart/lomiej Skorulski},
title = {Non-existence of
absolutely continuous invariant probabilities for exponential maps},
journal = {Fundamenta Mathematicae},
pages = {283--287},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2008},
doi = {10.4064/fm198-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-6/}
}
TY - JOUR AU - Neil Dobbs AU - Bart/lomiej Skorulski TI - Non-existence of absolutely continuous invariant probabilities for exponential maps JO - Fundamenta Mathematicae PY - 2008 SP - 283 EP - 287 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-6/ DO - 10.4064/fm198-3-6 LA - en ID - 10_4064_fm198_3_6 ER -
%0 Journal Article %A Neil Dobbs %A Bart/lomiej Skorulski %T Non-existence of absolutely continuous invariant probabilities for exponential maps %J Fundamenta Mathematicae %D 2008 %P 283-287 %V 198 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-6/ %R 10.4064/fm198-3-6 %G en %F 10_4064_fm198_3_6
Neil Dobbs; Bart/lomiej Skorulski. Non-existence of absolutely continuous invariant probabilities for exponential maps. Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 283-287. doi: 10.4064/fm198-3-6
Cité par Sources :