Rainbow Ramsey theorems for colorings
establishing negative partition relations
Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 255-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a function $f$, a subset of its domain is a rainbow subset for $f$ if $f$ is one-to-one on it. We start with an old
Erdős problem: Assume $f$ is a coloring of the pairs of $\omega _1$ with three colors such that every subset $ A $ of $\omega _1$ of size $\omega _1$ contains a pair of each color. Does there exist a rainbow triangle? We investigate rainbow problems and results of this style for colorings of pairs establishing negative “square bracket” relations.
Keywords:
given function subset its domain rainbow subset one to one start old erd problem assume coloring pairs omega three colors every subset omega size omega contains pair each color does there exist rainbow triangle investigate rainbow problems results style colorings pairs establishing negative square bracket relations
Affiliations des auteurs :
András Hajnal 1
@article{10_4064_fm198_3_4,
author = {Andr\'as Hajnal},
title = {Rainbow {Ramsey} theorems for colorings
establishing negative partition relations},
journal = {Fundamenta Mathematicae},
pages = {255--262},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2008},
doi = {10.4064/fm198-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-4/}
}
TY - JOUR AU - András Hajnal TI - Rainbow Ramsey theorems for colorings establishing negative partition relations JO - Fundamenta Mathematicae PY - 2008 SP - 255 EP - 262 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-4/ DO - 10.4064/fm198-3-4 LA - en ID - 10_4064_fm198_3_4 ER -
András Hajnal. Rainbow Ramsey theorems for colorings establishing negative partition relations. Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 255-262. doi: 10.4064/fm198-3-4
Cité par Sources :