Minimal actions of homeomorphism groups
Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 191-215
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a closed manifold of dimension $2$ or higher or the
Hilbert cube. Following Uspenskij one can consider the action of
${\rm Homeo}(X)$ equipped with the compact-open topology on ${\mit\Phi}\subset
2^{2^{X}}$, the space of maximal chains in $2^{X}$, equipped with
the Vietoris topology. We show that if one restricts the action to
$M\subset {\mit\Phi}$, the space of maximal chains of continua, then the
action is minimal but not transitive. Thus one shows that the action
of ${\rm Homeo}(X)$ on $U_{{{\rm Homeo}(X)}}$, the universal minimal space of
${\rm Homeo}(X)$, is not transitive (improving a result of Uspenskij).
Additionally for $X$ as above with ${\rm dim}(X)\geq 3$ we
characterize all the minimal subspaces of $V(M)$, the space of
closed subsets of $M$, and show that $M$ is the only minimal
subspace of ${\mit\Phi}$. For ${\rm dim}(X)\geq 3$, we also show that
$(M,{\rm Homeo}(X))$ is strongly proximal.
Keywords:
closed manifold dimension higher hilbert cube following uspenskij consider action homeo equipped compact open topology mit phi subset space maximal chains equipped vietoris topology restricts action subset mit phi space maximal chains continua action minimal transitive shows action homeo homeo universal minimal space homeo transitive improving result uspenskij additionally above dim geq characterize minimal subspaces space closed subsets only minimal subspace mit phi dim geq homeo strongly proximal
Affiliations des auteurs :
Yonatan Gutman 1
@article{10_4064_fm198_3_1,
author = {Yonatan Gutman},
title = {Minimal actions of homeomorphism groups},
journal = {Fundamenta Mathematicae},
pages = {191--215},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2008},
doi = {10.4064/fm198-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-1/}
}
Yonatan Gutman. Minimal actions of homeomorphism groups. Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 191-215. doi: 10.4064/fm198-3-1
Cité par Sources :