Minimal actions of homeomorphism groups
Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 191-215.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a closed manifold of dimension $2$ or higher or the Hilbert cube. Following Uspenskij one can consider the action of ${\rm Homeo}(X)$ equipped with the compact-open topology on ${\mit\Phi}\subset 2^{2^{X}}$, the space of maximal chains in $2^{X}$, equipped with the Vietoris topology. We show that if one restricts the action to $M\subset {\mit\Phi}$, the space of maximal chains of continua, then the action is minimal but not transitive. Thus one shows that the action of ${\rm Homeo}(X)$ on $U_{{{\rm Homeo}(X)}}$, the universal minimal space of ${\rm Homeo}(X)$, is not transitive (improving a result of Uspenskij). Additionally for $X$ as above with ${\rm dim}(X)\geq 3$ we characterize all the minimal subspaces of $V(M)$, the space of closed subsets of $M$, and show that $M$ is the only minimal subspace of ${\mit\Phi}$. For ${\rm dim}(X)\geq 3$, we also show that $(M,{\rm Homeo}(X))$ is strongly proximal.
DOI : 10.4064/fm198-3-1
Keywords: closed manifold dimension higher hilbert cube following uspenskij consider action homeo equipped compact open topology mit phi subset space maximal chains equipped vietoris topology restricts action subset mit phi space maximal chains continua action minimal transitive shows action homeo homeo universal minimal space homeo transitive improving result uspenskij additionally above dim geq characterize minimal subspaces space closed subsets only minimal subspace mit phi dim geq homeo strongly proximal

Yonatan Gutman 1

1 Institute of Mathematics The Hebrew University Jerusalem, Israel
@article{10_4064_fm198_3_1,
     author = {Yonatan Gutman},
     title = {Minimal actions of homeomorphism groups},
     journal = {Fundamenta Mathematicae},
     pages = {191--215},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2008},
     doi = {10.4064/fm198-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-1/}
}
TY  - JOUR
AU  - Yonatan Gutman
TI  - Minimal actions of homeomorphism groups
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 191
EP  - 215
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-1/
DO  - 10.4064/fm198-3-1
LA  - en
ID  - 10_4064_fm198_3_1
ER  - 
%0 Journal Article
%A Yonatan Gutman
%T Minimal actions of homeomorphism groups
%J Fundamenta Mathematicae
%D 2008
%P 191-215
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-1/
%R 10.4064/fm198-3-1
%G en
%F 10_4064_fm198_3_1
Yonatan Gutman. Minimal actions of homeomorphism groups. Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 191-215. doi : 10.4064/fm198-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-1/

Cité par Sources :