$K$-analytic versus ${\rm ccm}$-analytic sets in
nonstandard compact complex manifolds
Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 139-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that in an elementary extension of a compact complex manifold $M$, the $K$-analytic sets (where $K$ is the algebraic closure of the underlying real closed field) agree with the ccm-analytic sets if and only if $M$ is essentially saturated.
In particular, this is the case for compact Kähler manifolds.
Keywords:
shown elementary extension compact complex manifold k analytic sets where algebraic closure underlying real closed field agree ccm analytic sets only essentially saturated particular compact hler manifolds
Affiliations des auteurs :
Rahim Moosa 1 ; Sergei Starchenko 2
@article{10_4064_fm198_2_4,
author = {Rahim Moosa and Sergei Starchenko},
title = {$K$-analytic versus ${\rm ccm}$-analytic sets in
nonstandard compact complex manifolds},
journal = {Fundamenta Mathematicae},
pages = {139--148},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2008},
doi = {10.4064/fm198-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-4/}
}
TY - JOUR
AU - Rahim Moosa
AU - Sergei Starchenko
TI - $K$-analytic versus ${\rm ccm}$-analytic sets in
nonstandard compact complex manifolds
JO - Fundamenta Mathematicae
PY - 2008
SP - 139
EP - 148
VL - 198
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-4/
DO - 10.4064/fm198-2-4
LA - en
ID - 10_4064_fm198_2_4
ER -
%0 Journal Article
%A Rahim Moosa
%A Sergei Starchenko
%T $K$-analytic versus ${\rm ccm}$-analytic sets in
nonstandard compact complex manifolds
%J Fundamenta Mathematicae
%D 2008
%P 139-148
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-4/
%R 10.4064/fm198-2-4
%G en
%F 10_4064_fm198_2_4
Rahim Moosa; Sergei Starchenko. $K$-analytic versus ${\rm ccm}$-analytic sets in
nonstandard compact complex manifolds. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 139-148. doi: 10.4064/fm198-2-4
Cité par Sources :