A classification of ordinals up to Borel isomorphism
Fundamenta Mathematicae, Tome 198 (2008) no. 1, pp. 61-76 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider the Borel structures on ordinals generated by their order topologies and provide a complete classification of all ordinals up to Borel isomorphism in $\mathsf {ZFC}$. We also consider the same classification problem in the context of $\mathsf {AD}$ and give a partial answer for ordinals $\leq\omega_2$.
DOI : 10.4064/fm198-1-3
Keywords: consider borel structures ordinals generated their order topologies provide complete classification ordinals borel isomorphism mathsf zfc consider classification problem context mathsf partial answer ordinals leq omega

Su Gao  1   ; Steve Jackson  1   ; Vincent Kieftenbeld  1

1 Department of Mathematics University of North Texas P.O. Box 311430 Denton, TX 76203-1430, U.S.A.
@article{10_4064_fm198_1_3,
     author = {Su Gao and Steve Jackson and Vincent Kieftenbeld},
     title = {A classification of ordinals up to {Borel} isomorphism},
     journal = {Fundamenta Mathematicae},
     pages = {61--76},
     year = {2008},
     volume = {198},
     number = {1},
     doi = {10.4064/fm198-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-3/}
}
TY  - JOUR
AU  - Su Gao
AU  - Steve Jackson
AU  - Vincent Kieftenbeld
TI  - A classification of ordinals up to Borel isomorphism
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 61
EP  - 76
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-3/
DO  - 10.4064/fm198-1-3
LA  - en
ID  - 10_4064_fm198_1_3
ER  - 
%0 Journal Article
%A Su Gao
%A Steve Jackson
%A Vincent Kieftenbeld
%T A classification of ordinals up to Borel isomorphism
%J Fundamenta Mathematicae
%D 2008
%P 61-76
%V 198
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-3/
%R 10.4064/fm198-1-3
%G en
%F 10_4064_fm198_1_3
Su Gao; Steve Jackson; Vincent Kieftenbeld. A classification of ordinals up to Borel isomorphism. Fundamenta Mathematicae, Tome 198 (2008) no. 1, pp. 61-76. doi: 10.4064/fm198-1-3

Cité par Sources :