Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers
Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 197-235
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If $G$ is a group then the abelian subgroup spectrum of $G$ is
defined to be the set of all $\kappa$ such that there is a maximal
abelian subgroup of $G$ of size $\kappa$. The cardinal invariant
$A(G)$ is defined to be the least uncountable cardinal in the
abelian subgroup spectrum of $G$. The value of $A(G)$ is examined
for various groups $G$ which are quotients of certain permutation
groups on the integers. An important special case, to which much of
the paper is devoted, is the quotient of the full symmetric group by
the normal subgroup of permutations with finite support. It is shown
that, if we use $G$ to denote this group, then $A(G) \leq \mathfrak a$.
Moreover, it is consistent that $A(G) \neq \mathfrak a$. Related
results are obtained for other quotients using Borel ideals.
Keywords:
group abelian subgroup spectrum defined set kappa there maximal abelian subgroup size kappa cardinal invariant defined least uncountable cardinal abelian subgroup spectrum value examined various groups which quotients certain permutation groups integers important special which much paper devoted quotient full symmetric group normal subgroup permutations finite support shown denote group leq mathfrak moreover consistent neq mathfrak related results obtained other quotients using borel ideals
Affiliations des auteurs :
Saharon Shelah 1 ; Juris Steprāns 2
@article{10_4064_fm196_3_1,
author = {Saharon Shelah and Juris Stepr\={a}ns},
title = {Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers},
journal = {Fundamenta Mathematicae},
pages = {197--235},
publisher = {mathdoc},
volume = {196},
number = {3},
year = {2007},
doi = {10.4064/fm196-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/}
}
TY - JOUR AU - Saharon Shelah AU - Juris Steprāns TI - Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers JO - Fundamenta Mathematicae PY - 2007 SP - 197 EP - 235 VL - 196 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/ DO - 10.4064/fm196-3-1 LA - en ID - 10_4064_fm196_3_1 ER -
%0 Journal Article %A Saharon Shelah %A Juris Steprāns %T Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers %J Fundamenta Mathematicae %D 2007 %P 197-235 %V 196 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/ %R 10.4064/fm196-3-1 %G en %F 10_4064_fm196_3_1
Saharon Shelah; Juris Steprāns. Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers. Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 197-235. doi: 10.4064/fm196-3-1
Cité par Sources :