Possible cardinalities of maximal abelian subgroups of quotients of permutation groups of the integers
Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 197-235.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $G$ is a group then the abelian subgroup spectrum of $G$ is defined to be the set of all $\kappa$ such that there is a maximal abelian subgroup of $G$ of size $\kappa$. The cardinal invariant $A(G)$ is defined to be the least uncountable cardinal in the abelian subgroup spectrum of $G$. The value of $A(G)$ is examined for various groups $G$ which are quotients of certain permutation groups on the integers. An important special case, to which much of the paper is devoted, is the quotient of the full symmetric group by the normal subgroup of permutations with finite support. It is shown that, if we use $G$ to denote this group, then $A(G) \leq \mathfrak a$. Moreover, it is consistent that $A(G) \neq \mathfrak a$. Related results are obtained for other quotients using Borel ideals.
DOI : 10.4064/fm196-3-1
Keywords: group abelian subgroup spectrum defined set kappa there maximal abelian subgroup size kappa cardinal invariant defined least uncountable cardinal abelian subgroup spectrum value examined various groups which quotients certain permutation groups integers important special which much paper devoted quotient full symmetric group normal subgroup permutations finite support shown denote group leq mathfrak moreover consistent neq mathfrak related results obtained other quotients using borel ideals

Saharon Shelah 1 ; Juris Steprāns 2

1 Department of Mathematics Rutgers University Hill Center, Piscataway NJ 08854-8019, U.S.A. and Institute of Mathematics Hebrew University Givat Ram, Jerusalem 91904, Israel
2 Department of Mathematics York University 4700 Keele Street North York, Ontario, Canada M3J 1P3 and Fields Institute 222 College Street Toronto, Canada M5T 3J1
@article{10_4064_fm196_3_1,
     author = {Saharon Shelah and Juris Stepr\={a}ns},
     title = {Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers},
     journal = {Fundamenta Mathematicae},
     pages = {197--235},
     publisher = {mathdoc},
     volume = {196},
     number = {3},
     year = {2007},
     doi = {10.4064/fm196-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/}
}
TY  - JOUR
AU  - Saharon Shelah
AU  - Juris Steprāns
TI  - Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 197
EP  - 235
VL  - 196
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/
DO  - 10.4064/fm196-3-1
LA  - en
ID  - 10_4064_fm196_3_1
ER  - 
%0 Journal Article
%A Saharon Shelah
%A Juris Steprāns
%T Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers
%J Fundamenta Mathematicae
%D 2007
%P 197-235
%V 196
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/
%R 10.4064/fm196-3-1
%G en
%F 10_4064_fm196_3_1
Saharon Shelah; Juris Steprāns. Possible cardinalities of maximal
abelian subgroups of quotients of permutation groups of the integers. Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 197-235. doi : 10.4064/fm196-3-1. http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-1/

Cité par Sources :