First countable spaces without point-countable $\pi$-bases
Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 139-149.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We answer several questions of V. Tkachuk [Fund. Math. 186 (2005)] by showing that$\bullet$ there is a ZFC example of a first countable, 0-dimensional Hausdorff space with no point-countable $\pi$-base (in fact, the minimum order of a $\pi$-base of the space can be made arbitrarily large); $\bullet$ if there is a $\kappa$-Suslin line then there is a first countable GO-space of cardinality $\kappa^+$ in which the order of any $\pi$-base is at least $\kappa$;$\bullet$ it is consistent to have a first countable, hereditarily Lindelöf regular space having uncountable $\pi$-weight and $\omega_1$ as a caliber (of course, such a space cannot have a point-countable $\pi$-base).
DOI : 10.4064/fm196-2-4
Keywords: answer several questions tkachuk fund math showing bullet there zfc example first countable dimensional hausdorff space point countable pi base minimum order pi base space made arbitrarily large bullet there kappa suslin line there first countable go space cardinality kappa which order pi base least kappa bullet consistent have first countable hereditarily lindel regular space having uncountable pi weight omega caliber course space cannot have point countable pi base

István Juhász 1 ; Lajos Soukup 1 ; Zoltán Szentmiklóssy 2

1 Alfréd Rényi Institute of Mathematics V. Reáltanoda utca, 13–15 H-1053 Budapest, Hungary
2 Department of Analysis Eötvös Loránd University Pázmány Péter sétány 1/A H-1117 Budapest, Hungary
@article{10_4064_fm196_2_4,
     author = {Istv\'an Juh\'asz and Lajos Soukup and Zolt\'an Szentmikl\'ossy},
     title = {First countable spaces without point-countable $\pi$-bases},
     journal = {Fundamenta Mathematicae},
     pages = {139--149},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2007},
     doi = {10.4064/fm196-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-4/}
}
TY  - JOUR
AU  - István Juhász
AU  - Lajos Soukup
AU  - Zoltán Szentmiklóssy
TI  - First countable spaces without point-countable $\pi$-bases
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 139
EP  - 149
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-4/
DO  - 10.4064/fm196-2-4
LA  - en
ID  - 10_4064_fm196_2_4
ER  - 
%0 Journal Article
%A István Juhász
%A Lajos Soukup
%A Zoltán Szentmiklóssy
%T First countable spaces without point-countable $\pi$-bases
%J Fundamenta Mathematicae
%D 2007
%P 139-149
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-4/
%R 10.4064/fm196-2-4
%G en
%F 10_4064_fm196_2_4
István Juhász; Lajos Soukup; Zoltán Szentmiklóssy. First countable spaces without point-countable $\pi$-bases. Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 139-149. doi : 10.4064/fm196-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-4/

Cité par Sources :