Coordinatewise decomposition of group-valued Borel functions
Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 119-126.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets $S \subseteq X \times Y$ with the property that every Borel function $f : S \rightarrow \mathbb C$ is of the form $f(x,y) = u(x) + v(y)$, where $u : X \rightarrow \mathbb C$ and $v : Y \rightarrow \mathbb C$ are Borel.
DOI : 10.4064/fm196-2-2
Keywords: answering question opotowski nadkarni sarbadhikari srivastava characterize borel sets subseteq times property every borel function rightarrow mathbb form where rightarrow mathbb rightarrow mathbb borel

Benjamin D. Miller 1

1 Department of Mathematics University of California 520 Portola Plaza Los Angeles, CA 90095-1555, U.S.A.
@article{10_4064_fm196_2_2,
     author = {Benjamin D. Miller},
     title = {Coordinatewise decomposition of  group-valued {Borel
functions}},
     journal = {Fundamenta Mathematicae},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {196},
     number = {2},
     year = {2007},
     doi = {10.4064/fm196-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/}
}
TY  - JOUR
AU  - Benjamin D. Miller
TI  - Coordinatewise decomposition of  group-valued Borel
functions
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 119
EP  - 126
VL  - 196
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/
DO  - 10.4064/fm196-2-2
LA  - en
ID  - 10_4064_fm196_2_2
ER  - 
%0 Journal Article
%A Benjamin D. Miller
%T Coordinatewise decomposition of  group-valued Borel
functions
%J Fundamenta Mathematicae
%D 2007
%P 119-126
%V 196
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/
%R 10.4064/fm196-2-2
%G en
%F 10_4064_fm196_2_2
Benjamin D. Miller. Coordinatewise decomposition of  group-valued Borel
functions. Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 119-126. doi : 10.4064/fm196-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/

Cité par Sources :