Coordinatewise decomposition of group-valued Borel
functions
Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 119-126
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets $S \subseteq X \times Y$ with the property that every Borel function $f : S \rightarrow
\mathbb C$ is of the form $f(x,y) = u(x) + v(y)$, where $u : X \rightarrow \mathbb C$ and $v : Y \rightarrow \mathbb C$ are Borel.
Keywords:
answering question opotowski nadkarni sarbadhikari srivastava characterize borel sets subseteq times property every borel function rightarrow mathbb form where rightarrow mathbb rightarrow mathbb borel
Affiliations des auteurs :
Benjamin D. Miller 1
@article{10_4064_fm196_2_2,
author = {Benjamin D. Miller},
title = {Coordinatewise decomposition of group-valued {Borel
functions}},
journal = {Fundamenta Mathematicae},
pages = {119--126},
publisher = {mathdoc},
volume = {196},
number = {2},
year = {2007},
doi = {10.4064/fm196-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/}
}
TY - JOUR AU - Benjamin D. Miller TI - Coordinatewise decomposition of group-valued Borel functions JO - Fundamenta Mathematicae PY - 2007 SP - 119 EP - 126 VL - 196 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm196-2-2/ DO - 10.4064/fm196-2-2 LA - en ID - 10_4064_fm196_2_2 ER -
Benjamin D. Miller. Coordinatewise decomposition of group-valued Borel functions. Fundamenta Mathematicae, Tome 196 (2007) no. 2, pp. 119-126. doi: 10.4064/fm196-2-2
Cité par Sources :